K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Sửa đề : \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) (*)

ĐK : \(\left\{{}\begin{matrix}x-1\ge0\\x-3-4\sqrt{x-1}\ge0vàx+8-6\sqrt{x-1}\ge0\end{matrix}\right.\)(*) \(\Leftrightarrow\sqrt{\left(x-1\right)-2.2\sqrt{x-1}+4}+\sqrt{\left(x-1\right)-2.3\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

=================

Đến đây phá dấu giá trị tuyệt đối ra rồi giải tiếp , bn tự làm nhé

12 tháng 8 2017

ukm tks bn

20 tháng 11 2019

x,y là số nguyên tố đúng ko?

20 tháng 11 2019

ĐK \(-1\le x\le7\)

Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)

\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)

=> \(VP\le4\)(2)

Từ (1);(2)

=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)

Vậy x=3

ĐK \(x\ge-4\)

\(BPT\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x\ge-4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-4\end{cases}}\)

\(\Rightarrow x\ge\frac{3}{2}\)

23 tháng 10 2019

ĐK: \(x+4\ge0\) <=> \(x\ge-4\)

Bpt <=> \(\orbr{\begin{cases}x+4=0\\2x-3=0\end{cases}}\) hoặc \(2x-3>0\) <=> \(\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)hoặc \(x>\frac{3}{2}\)

<=> \(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)Thỏa mãn đk.

Vậy 

\(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

14 tháng 7 2017

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ

17 tháng 10 2016

Điều kiện xác định

\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)

=> Tập xác định là tập rỗng

Vậy pt vô nghiệm

14 tháng 8 2017

\(\sqrt{x-\sqrt{x^2}-1}+\sqrt{x+\sqrt{x^2}-1}=2\Leftrightarrow\sqrt{x-\left|x\right|-1}+\sqrt{x+\left|x\right|-1}=2\)

th1: \(x\ge0\)

\(\Rightarrow\sqrt{x-\left|x\right|-1}=\sqrt{x-x-1}=\sqrt{-1}\) (không tồn tại)

th2: \(x< 0\)

\(\Rightarrow\sqrt{x+\left|x\right|-1}=\sqrt{x-x-1}=\sqrt{-1}\) (không tồn tại)

vậy phương trình vô nghiệm

14 tháng 8 2017

đề bị sai cho mik xl

\(\sqrt{x\sqrt{x^2-1}}+\sqrt{x\sqrt{x^2-1}}=2\)

30 tháng 7 2019

a) \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)

\(\Leftrightarrow x^2.2+3.2-\sqrt{2x^2-3x+2}.3=\frac{3}{2}\left(x+1\right).2\)

\(\Leftrightarrow2x^2+6-\sqrt{2x^2-3x+2}=3\left(x+1\right)\)

\(\Leftrightarrow2x^2+6-2\sqrt{2x^2-3x+2}=3x+3\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}+6=3x^2+3-2x^2\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=3x+3-2x^2-6\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=-2x^3+3x-3\)

\(\Leftrightarrow\left(-2\sqrt{2x^2-3x+2}\right)^2=\left(-2x^2+3x-3\right)^2\)

\(\Leftrightarrow8x^2-12x+8=4x^4-12x^3+21x^2-18x+9\)

\(\Leftrightarrow4x^2-12x^3+12x^2-6x+1=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: nghiệm phương trình là \(\left\{1;\frac{1}{2}\right\}\)

30 tháng 7 2019

b) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

Xét \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)

\(=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=\left|1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\Leftrightarrow5\le x\le10\)

11 tháng 8 2017

\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}=\sqrt{6}\)

(ĐKXĐ: \(x\ge\dfrac{1}{4}\))

\(\Leftrightarrow2x+\sqrt{4x-1}+2x-\sqrt{4x-1}+2\sqrt{4x^2-4x+1}=6\)

\(\Leftrightarrow4x+2\sqrt{\left(2x-1\right)^2}=6\)

\(\Leftrightarrow2\left(2x+\left|2x-1\right|\right)=6\)

\(\Leftrightarrow2x+\left|2x-1\right|=3\)

\(\Leftrightarrow\left|2x-1\right|=3-2x\)

\(\Leftrightarrow\left[{}\begin{matrix}3-2x\ge0\\2x-1=3-2x\\2x-1=2x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{3}{2}\\x=1\left(nhận\right)\\0=-2\left(vô.lý\right)\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm là x=1.

12 tháng 8 2017

Cảm ơn.cậu