Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: x\(\ge\) -3
PT <=> \(\left(\sqrt{x+8}+\sqrt{x+3}\right)\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)
<=> \(\left(x+8-x-3\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)
<=> \(\sqrt{\left(x+3\right)\left(x+8\right)}+1=\sqrt{x+8}+\sqrt{x+3}\)
<=> \(\left(\sqrt{\left(x+3\right)\left(x+8\right)}-\sqrt{x+8}\right)+\left(1-\sqrt{x+3}\right)=0\)
<=> \(\left(1-\sqrt{x+8}\right).\left(1-\sqrt{x+3}\right)=0\)
<=> \(\sqrt{x+8}=1\) hoặc \(\sqrt{x+3}=1\)
<=> x+ 8 = 1 hoặc x + 3 = 1
<=> x = -7 hoặc x = - 2
Đối chiếu Đk => x = - 2 là nghiệm của PT
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
Đặt \(t=\sqrt{x}-2\) , pt trở thành
\(\left(t+1\right)^3+\left(t-1\right)^3=8t^3\Leftrightarrow t^3+3t^2+3t+1+t^3-3t^2+3t-1=8t^3\)
\(\Leftrightarrow6t^3-6t=0\Leftrightarrow t\left(t-1\right)\left(t+1\right)=0\)
=> t = 0 hoặc t = 1 hoặc t = -1
Từ đó suy ra x.
đặt \(\left\{{}\begin{matrix}u=\sqrt{x+8}\\v=\sqrt{x+3}\end{matrix}\right.\) khi đó phương trình đã cho trở thành :
(u-v)(uv+1)=5 và có u2-v2=5 nên suy ra :
(u-v)(uv+1)=(u-v)(u+v) <=> (u-v)(uv+1-u-v)=0
=> u-v=0 hoặc uv+1-u-v =0 . đến đây bạn thay căn vào giải nha mk ngại viết căn.
b. Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath
Dat \(\sqrt{x+8}=a,\sqrt{x+3}=b\)
=> a.b=\(\sqrt{x^2+11x+24},a^2-b^2=5\)
pt<=> (a-b)(ab+1)=a2-b2
=> (a-b)(ab+1)=(a-b)(a+b)
=> (a-b)(ab+1)-(a-b)(a+b)=0
=> (a-b)(ab+1-a-b)=0
=> (a-b)[a(b-1)-(b-1)]=0
=> (a-b)(a-1)(b-1)=0
=> \(\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
Voi a=b thi : x+8=x+3
=> pt vo nghiem
Voi a=1 thi x+8=1 => x=-7
Voi b=1 thi x+3=1 => x=-2
k có nghiệm x=-7 nhé!