K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 12 2017

Lời giải:

Ta có:

\(2^{x}+2^{x-1}+2^{x-2}=3^x+3^{x-1}+3^{x-2}\)

\(\Leftrightarrow 2^{x-2}(2^2+2+1)=3^{x-2}(3^2+3+1)\)

\(\Leftrightarrow 2^{x-2}.7=3^{x-2}.13\)

\(\Leftrightarrow \frac{2^{x-2}}{3^{x-2}}=\frac{13}{7}\)

\(\Leftrightarrow \left(\frac{2}{3}\right)^{x-2}=\frac{13}{7}\)

\(\Leftrightarrow x-2=\log_{\frac{2}{3}}\frac{13}{7}\)

\(\Leftrightarrow x=2+\log_{\frac{2}{3}}\frac{13}{7}=\log_{\frac{2}{3}}\frac{4}{9}+\log_{\frac{2}{3}}\frac{13}{7}=\log_{\frac{2}{3}}\frac{52}{63}\)

Vậy \(x=\log_{\frac{2}{3}}\frac{52}{63}\)

25 tháng 12 2017

Đáp án x=log(2/3)(52/63)

29 tháng 3 2016

Nếu $x+2>2x+1$ thì $2^{x+2}>2^{2x+1},3^{x+2}>3^{2x+1}$ nên VT>VP.

Nếu $x+2<2x+1$ thì $2^{x+2}<2^{2x+1},3^{x+2}<3^{2x+1}$ nên VT<VP.

Vậy x+2=2x+1 hay x=1

29 tháng 3 2016

Phương trình đã cho tương đương với phương trình 

\(3^{x+2}-3^{x+2}=3^{2x+1}-2^{2x+1}\)

Dễ thấy \(x=1\) là nghiệm của phương trình

Nếu \(x>1\) thì \(x+2<2x+1\)

Do đó

\(3^{x+2}<3^{2x+1};3^{2x+1}>2^{x+2}\)

Hay vế trái <0< Vế phải, phương trình vô nghiệm

Tương tự, nếu x<1 thì phương trình cũng vô nghiệm

Vạy x=1 là nghiệm duy nhất của phương trình

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

29 tháng 3 2016

Biến đổi phương trình về dạng :

\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)

Nhận thấy \(x=1\) là nghiệm 

Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)

Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.

Đáp số : x=1

 

29 tháng 3 2016

Lấy Logarit cơ số 3 hai vế, ta có phương trình tương đương :

\(\log_3\left(3^x.2^{x^2}\right)=\log_33^x+\log_32^{x^2}=0\)

\(\Leftrightarrow x+x^2\log32=0\)

Do đó phương trình có 2 nghiệm là \(x=0;x=\frac{-1}{\log_33}=-\log_33\)

31 tháng 3 2016

Hàm lũy thừa, mũ và loagrit

29 tháng 3 2016

Lấy logarit cơ số 10 hai vế ta có :

\(lg2^{x+2}+lg3^3=lg4^x+lg5^{x-1}\)

\(\Leftrightarrow\left(x+2\right)lg2+xlg3=xlg4+\left(x-1\right)lg5\)

\(\Leftrightarrow x\left(lg4+lg5-lg3-lg2\right)=2lg2+lg5\)

\(\Leftrightarrow x.lg\frac{4.5}{3.2}=lg\left(2^2.5\right)\)

\(\Leftrightarrow x=\frac{lg20}{lg\frac{10}{3}}\)

Vậy nghiệm của phương trình là \(x=\frac{lg20}{lg\frac{10}{3}}\)

30 tháng 3 2016

Đặt \(f\left(x\right)=\left(\frac{1}{6}\right)^x+2\left(\frac{1}{3}\right)^x+3\left(\frac{1}{2}\right)^x\)

Nhận thấy f(2) = 1. Mặt khác f(x) là tổng của các hàm số nghịch biến trên R. Do đó f(x) cũng là hàm nghịch biến. Từ đó ta có :

\(f\left(x\right)<1=f\left(2\right)\Leftrightarrow x>2\)

Vậy tập nghiệm của bất phương trình là 

\(D=\left(2;+\infty\right)\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

29 tháng 5 2017