Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )
<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0
<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0
<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0
<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)
Vậy x = { \(\frac{-1}{3};-5\)}
b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0
<=> ( x + 5 )2 -4.x . (x + 5 ) = 0
<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0
<=> ( x + 5 ) . ( 5 - 3.x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{3};-5\right\}\)
c) (4.x - 5 )2 - 2. ( 16.x2 -25 ) = 0
<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0
<=> ( 4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0
<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0
<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0
<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)
d) ( 4.x + 3 )2 = 4. ( x2 - 2.x + 1 )
<=> 16.x2 + 24.x + 9 - 4.x2 + 8.x - 4 = 0
<=> 12.x2 + 32.x + 5 =0
<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0
<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
e) x2 -11.x + 28 = 0
<=> x2 -4.x - 7.x + 28 = 0
<=> ( x - 7 ) . ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)
Vậy x = { 4 ; 7 }
f ) 3.x.3 - 3.x2 - 6.x = 0
<=> 3.x. ( x2 -x - 2 ) = 0
<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\([x=0\) \([x=0\)
( Lưu ý :Lưu ý này không cần ghi vào vở : Chị nối 2 ý đó làm 1 nha cj ! )
Vậy x = { 2 ; -1 ; 0 }
\(a,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow x\in\left\{-5;3\right\}\)
\(b,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\3x-1=4x+1\end{cases}}\)
\(c,\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\Leftrightarrow2x\left(x-4\right)\left(x+4\right)+3\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+4\right)\left(x-4\right)=0\Leftrightarrow......\)
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
a)3(x-1)(2x-1)-5(x+8)(x-1)=0
<=>(x-1)(6x-3-5x-40)=0
<=>(x-1)(x-43)=0
b)2x^3+3x^2-32x-48=0
<=>x^2(2x+3)-16(2x+3)=0
<=>(2x+3)(x-4)(x+4)=0
học tốt
Lời giải:
a)
$x^2+2x-15=0$
$\Leftrightarrow x^2-3x+5x-15=0$
$\Leftrightarrow x(x-3)+5(x-3)=0$
$\Leftrightarrow (x-3)(x+5)=0$
$\Rightarrow x=3$ hoặc $x=-5$
b)
$9x^2-1=(3x+1)(4x+1)=12x^2+7x+1$
$\Leftrightarrow 3x^2+7x+2=0$
$\Leftrightarrow (x+2)(3x+1)=0$
$\Rightarrow x=-2$ hoặc $x=-\frac{1}{3}$
c)
$2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^3-8x^2+11x^2-44x+12x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)(2x^2+8x+3x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x=\pm 4$ hoặc $x=-\frac{3}{2}$
\(2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow2x^3-32x+3x^2-48=0\)
\(\Leftrightarrow2x\left(x^2-16\right)+3\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=-\frac{3}{2}\end{matrix}\right.\)
b/ \(\Leftrightarrow10x^2-15x+4x-6=0\)
\(\Leftrightarrow5x\left(2x^2-3\right)+2\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{2}{5}\end{matrix}\right.\)
Lời giải:
a)
$10x^2-11x-6=0$
$\Leftrightarrow 10x^2-15x+4x-6=0$
$\Leftrightarrow 5x(2x-3)+2(2x-3)=0$
$\Leftrightarrow (2x-3)(5x+2)=0$
$\Rightarrow 2x-3=0$ hoặc $5x+2=0$
$\Rightarrow x=\frac{3}{2}$ hoặc $x=-\frac{2}{5}$
b)
$2x^3+3x^2-32x=48$
$\Leftrightarrow 2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^3-8x^2+11x-44x+12x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$
$\Rightarrow x=\pm 4$ hoặc $x=\frac{-3}{2}$