K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

a) Mạn phép sửa đề :

x4 - 3x3 + 4x2 - 3x + 1 = 0

⇔ x4 - x3 - 2x3 + 2x2 + 2x2 - 2x - x + 1 = 0

⇔ x3( x - 1) - 2x2( x - 1) + 2x( x - 1) - ( x - 1) = 0

⇔ ( x - 1)( x3 - 2x2 + 2x - 1) = 0

⇔ ( x - 1)[ ( x - 1)(x2 + x + 1) - 2x( x - 1)] = 0

⇔ ( x - 1)2( x2 - x + 1) = 0

Do : x2 - x + 1 \(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\text{≥}\dfrac{3}{4}>0\text{∀}x\)

⇔ ( x - 1)2 = 0

⇔ x = 1

Vậy,....

b) 6x4 - x3 - 7x2 + x + 1 = 0

⇔ 6x4 + 6x3 - 7x3 - 7x2 + x + 1 = 0

⇔ 6x3( x + 1) - 7x2( x + 1) + x + 1 = 0

⇔ ( x + 1)( 6x3 - 7x2 + 1 ) = 0

⇔ ( x + 1)( 6x3 - 6x2 - x2 + 1 ) = 0

⇔ ( x + 1)[ 6x2( x - 1) -( x + 1)( x - 1)] = 0

⇔ ( x + 1)2( 6x2 - x - 1) = 0

⇔ ( x + 1)2( 6x2 - 3x + 2x - 1) = 0

⇔( x + 1)2[ 3x( 2x - 1) + 2x - 1] = 0

⇔( x + 1)2( 2x - 1)( 3x + 1) = 0

⇔ x = -1 ; x = \(\dfrac{1}{2}\) hoặc : x = \(\dfrac{-1}{3}\)

Vậy,....

18 tháng 3 2020

rrrrrrrr\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

5 tháng 3 2019

\(j,3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy...............................

5 tháng 3 2019

\(m,3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-2\end{matrix}\right.\)

12 tháng 2 2016

b/ (12x + 7)2(3x + 2)(2x + 1) = 3

=> (144x2 + 168x + 49) (6x2 + 7x + 2) = 3 

- Nhân 2 vế cho 24 ta đc:

    (144x2 + 168x + 49) (144x2 + 168x + 48) = 72

- Đặt a = 144x2 + 168x + 48 , ta đc phương trình:

    (a + 1).a = 72

    => a2 + a - 72 = 0 

    => (a + 9)(a - 8) = 0

    => a = -9 hoặc a = 8

- Với a = -9 <=> 144x2 + 168x + 48 = -9 => 144x2 + 168x + 57 = 0 , mà 144x2 + 168x + 57 > 0 => pt vô nghiệm

- Với a = 8 <=> 144x2 + 168x + 48 = 8 => 144x2 + 168x + 40 = 0 => (3x + 1)(6x + 5) = 0 => x = -1/3 hoặc x = -5/6

Vậy x = -1/3 , x = -5/6

11 tháng 2 2016

muốn giải câu nào

14 tháng 1 2018

\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{2}{3};-1;\dfrac{1}{2}\right\}\)

\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x^2\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)\left(1+x\right)-\left(1-x\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(1-x-1-x-x-3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(-3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\-3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-1\right\}\)

\(c,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\-5x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{7}{5}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2;\dfrac{7}{5}\right\}\)

\(d,x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất x = -1

\(e,x^3-7x+6=0\)

\(\Leftrightarrow x^3-4x-3x+6=0\)

\(\Leftrightarrow x\left(x^2-4\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2;-3\right\}\)

\(f,x^4-4x^3+12x-9=0\)

\(\Leftrightarrow\left(x^4-9\right)-\left(4x^3-12x\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x^2-3-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3>0\forall x\\x^2-4x-3>0\forall x\end{matrix}\right.\)

Vậy phương trình vô nghiệm

\(g,x^5-5x^3+4x=0\)

\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^4-4x^2-x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\) hoặc x = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\\x=-1\end{matrix}\right.\) hoặc x =0

Vậy tập nghiệm của pt \(S=\left\{0;1;-1;2;-2\right\}\)

\(h,x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^4-x^2\right)-\left(4x^3-4x\right)+\left(4x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4x\left(x^2-1\right)+4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{1;-1;2\right\}\)

a) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2\right\}\)

b) Ta có: \(-x^2+5x-6=0\)

\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)

\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)

\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)

\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

c) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

⇔(4x2-10x)-(2x-5)=0

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

d) Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)

e) Ta có: \(x^3+2x^2-x-2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;1;-1\right\}\)

g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)

\(\Leftrightarrow-24x-8=0\)

\(\Leftrightarrow-8\left(3x+1\right)=0\)

⇔3x+1=0

\(\Leftrightarrow3x=-1\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

22 tháng 1 2020

h) \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy S = {2; 1; \(\frac{1}{2}\)}

i) \(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)

Vậy S = {1;-2}

4 tháng 3 2018

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+7x^2+7x\right)+2=0\)

\(\Leftrightarrow x\left(2x^2+7x+7+2\right)=0\)

\(\Leftrightarrow x\left(2x^2+7x+9\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x+3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2+6x\right)+\left(3x+9\right)\right]=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{3}{2}\end{matrix}\right.\)

chúc bạn học tốt!

4 tháng 3 2018

b​ài giải không đúng yêu cầu của đề => sai

11 tháng 3 2020

a)  \(x^4-x^2-2=0\)

\(\Leftrightarrow x^4-2x^2+x^2-2=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\left(tm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)

b) \(\left(x+1\right)^4-\left(x^2+2\right)^2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x^2+2\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2x+1=x^2+2\\x^2+2x+1=-x^2-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x^2+2x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(tm\right)\\2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2}\right\}\)

c) \(3x^2-2x-8=0\)

\(\Leftrightarrow3x^2-6x+4x-8=0\)

\(\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

d) \(2x^3-3x^2+3x+8=0\)

\(\Leftrightarrow2x^3+2x^2-5x^2-5x+8x+8=0\)

\(\Leftrightarrow2x^2\left(x+1\right)-5x\left(x+1\right)+8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-5x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-5x+8=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

11 tháng 3 2020

e) \(x^3-0,25x=0\)

\(\Leftrightarrow x\left(x^2-0,25\right)=0\)

\(\Leftrightarrow x\left(x-0,5\right)\left(x+0,5\right)=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc \(x-0,5=0\)

hoặc \(x+0,5=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc \(x=0,5\)

hoặc \(x=-0,5\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;0,5;-0,5\right\}\)

f) \(x^4+2x^3+x^2=0\)

\(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)

g) \(x^3-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

h) \(6x^2-7x+2=0\)

\(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)