K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

a) \(3x-1-\sqrt{4x^2-12x+9}=0\)

\(\Leftrightarrow3x-1=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow3x-1=\sqrt{\left(2x-3\right)^2}=2x-3\)

\(\Leftrightarrow3x-2x=-3+1\)

\(\Leftrightarrow x=-2\)

b) Đề đúng:

\(\sqrt{3-2\sqrt{2}}-\sqrt{x^2-2x\sqrt{3}+3}=0\)

\(\Leftrightarrow\sqrt{3-2\sqrt{2}}=\sqrt{x^2-2x\sqrt{3}+3}\)

\(\Leftrightarrow\sqrt{3-2\sqrt{2}}=\sqrt{\left(x-\sqrt{3}\right)^2}=x-\sqrt{3}\)

\(\Leftrightarrow3-2\sqrt{2}=x^2-2\sqrt{3}\cdot x+3\)

\(\Leftrightarrow-x^2+2\sqrt{3}\cdot x-2\sqrt{2}=0\)

Giải pt bậc 2 có:

\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-1\right)\cdot\left(-2\sqrt{2}\right)=12-8\sqrt{2}\)

=> \(\left\{{}\begin{matrix}x_1=-\dfrac{-2\sqrt{3}+\sqrt{12-8\sqrt{2}}}{2}\\x_2=-\dfrac{-2\sqrt{3}-\sqrt{12-8\sqrt{2}}}{2}\end{matrix}\right.\)

Vậy...........................

NV
27 tháng 9 2019

ĐKXĐ: bạn tự tìm

a/ Có vẻ bạn ghi nhầm đề, nhưng nói chung vẫn giải được, nghiệm xấu

\(\Leftrightarrow2\sqrt{x}+\frac{1}{2}\sqrt{x}-\frac{3}{4}\sqrt{5x}=5\)

\(\Leftrightarrow\sqrt{x}\left(\frac{5}{2}-\frac{3\sqrt{5}}{4}\right)=5\)

\(\Rightarrow\sqrt{x}=\frac{40+12\sqrt{5}}{11}\Rightarrow x=\left(\frac{40+12\sqrt{5}}{11}\right)^2\)

b/ \(\sqrt{3-x}-3\sqrt{3-x}+5\sqrt{3-x}=6\)

\(\Leftrightarrow3\sqrt{3-x}=6\)

\(\Leftrightarrow\sqrt{3-x}=2\Rightarrow3-x=4\Rightarrow x=-1\)

c/ \(7\left(5\sqrt{x}-2\right)=2\left(8\sqrt{x}+\frac{5}{2}\right)\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow19\sqrt{x}=19\)

\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)

d/ \(\sqrt{3x^2+12x+4}=4\)

\(\Leftrightarrow3x^2+12x+4=16\)

\(\Leftrightarrow3x^2+12x-12=0\)

\(\Rightarrow x=-2\pm2\sqrt{2}\)

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )