Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2+3-\left(6x+1\right)\sqrt{x^2+3}+9x^2+3x-2=0\)
Đặt \(\sqrt{x^2+3}=t\)
\(\Rightarrow t^2-\left(6x+1\right)t+9x^2+3x-2=0\)
\(\Delta=\left(6x+1\right)^2-4\left(9x^2+3x-2\right)=9\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{6x+1+3}{2}=3x+2\\t=\frac{6x+1-3}{2}=3x-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3x+2\left(x\ge-\frac{2}{3}\right)\\\sqrt{x^2+2}=3x-1\left(x\ge\frac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2=\left(3x+2\right)^2\\x^2+2=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow...\)
a/ ĐKXĐ:...
Đặt \(\sqrt{x^2-6x+6}=t\Rightarrow t^2=x^2-6x+6\Leftrightarrow t^2+3=x^2-6x+9\)
\(\Rightarrow t^2+3=4t\Leftrightarrow t^2-4t+3=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-6x+6=9\\x^2-6x+6=1\end{matrix}\right.\)
Bạn tự giải nốt và đối chiếu ĐKXĐ
Mouse's Highen's Bạn xem lại hộ mk đề bài câu b đi. Thấy đáng lẽ phải như thế này:
\(\sqrt{2x+3}+\sqrt{x+1}=3x+4\)
\(x^4-2x^2\sqrt{x^2-2x+16}+x^2-2x+16+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-\sqrt{x^2-2x+16}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-\sqrt{x^2-2x+16}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)
Căn thức luôn xác định nên ko cần điều kiện đâu bạn
ĐKXĐ: ...
\(\Leftrightarrow18x^2-9x\sqrt{6x+3}+6x+3=0\)
\(\Leftrightarrow\left(3x-\sqrt{6x+3}\right)\left(6x-\sqrt{6x+3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{6x+3}=3x\\\sqrt{6x+3}=9x\end{matrix}\right.\) \(x\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}9x^2-6x-3=0\\81x^2-6x-3=0\end{matrix}\right.\)