Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge1\right)\)
\(\Rightarrow x^2-2x=\frac{t^2-7}{6}\)
pt trên tương đương với \(\frac{7-t^2}{6}+t=0\)
\(\Leftrightarrow t^2-7-6t=0\)
\(\Leftrightarrow\int^{t=-1}_{t=7}\)
\(\Leftrightarrow t=7\)(vì \(t\ge1\))
thay vào rồi bình phương lên tìm x
Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)
Áp dụng bất đẳng thức cosi cho 3 số
\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)
\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)
\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)
\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)
vậy phương trình có nghiệm x=-1
Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.
\(\sqrt{6x-x^2}+2x^2-12+15=0\left(x;\left[0;6\right]\right)\)
<=> \(2\left(6x-x^2\right)-\sqrt{6x-x^2}-15=0\)
\(\Delta_{\left(\sqrt{6x-x^2}\right)}=1+4.2.15=121=11^2\)
\(\sqrt{6x-x^2}=\dfrac{1-11}{4}=\dfrac{-5}{2}\left(l\right)\)
\(\sqrt{6x-x^2}=\dfrac{1+11}{4}=3\Leftrightarrow6x-x^2=9\)
\(\Leftrightarrow\left(x-3\right)^2=0;x=3\left(n\right)\)
\(2x-x^2+\sqrt{6x^2-12x+7}=0\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)(1)
Đặt \(t=x^2-2x\)(t\(\ge0\))
Vậy (1)\(\Leftrightarrow\sqrt{6t+7}=t\Leftrightarrow6t+7=t^2\Leftrightarrow t^2-6t-7=0\Leftrightarrow t^2+t-7t-7=0\Leftrightarrow t\left(t+1\right)-7\left(t+1\right)=0\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t+1=0\\t-7=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=-1\left(ktm\right)\\t=7\left(tm\right)\end{matrix}\right.\)\(\Leftrightarrow t=7\Leftrightarrow x^2-2x=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x^2-2x+1=8\Leftrightarrow\left(x-1\right)^2=8\Leftrightarrow x-1=\pm2\sqrt{2}\Leftrightarrow x=1\pm2\sqrt{2}\)Vậy S={\(1\pm2\sqrt{2}\)}
thanks