K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

1.

PT \(\Leftrightarrow (x+2)(x-3)(x-4)(x+6)=16x^2\)

\(\Leftrightarrow [(x+2)(x+6)][(x-3)(x-4)]=16x^2\)

\(\Leftrightarrow (x^2+8x+12)(x^2-7x+12)=16x^2\)

\(\Leftrightarrow (a+8x)(a-7x)=16x^2\) (đặt \(x^2+12=a\) )

\(\Leftrightarrow a^2+ax-72x^2=0\)

\(\Leftrightarrow (a-8x)(a+9x)=0\Rightarrow \left[\begin{matrix} a-8x=0\\ a+9x=0\end{matrix}\right.\)

Nếu \(a-8x=0\Leftrightarrow x^2+12-8x=0\Leftrightarrow (x-2)(x-6)=0\Rightarrow \left[\begin{matrix} x=2\\ x=6\end{matrix}\right.\)

Nếu \(a+9x=0\Leftrightarrow x^2+12+9x=0\Leftrightarrow x=\frac{-9\pm \sqrt{33}}{2}\)

Vậy...........

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

2.

PT \(\Leftrightarrow [(4x+7)(2x+1)][(4x+5)(x+1)]=9\)

\(\Leftrightarrow (8x^2+18x+7)(4x^2+9x+5)=9\)

\(\Leftrightarrow (2a+7)(a+5)=9\) (đặt \(a=4x^2+9x\) )

\(\Leftrightarrow 2a^2+17a+26=0\)

\(\Leftrightarrow (a+2)(2a+13)=0 \)\(\Rightarrow \left[\begin{matrix} a+2=0\\ 2a+13=0\end{matrix}\right.\)

Nếu \(a+2=0\Leftrightarrow 4x^2+9x+2=0\Leftrightarrow (4x+1)(x+2)=0\)

\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{4}\\ x=-2\end{matrix}\right.\)

Nếu \(2a+13=0\Leftrightarrow 8x^2+18x+13=0\) (pt này dễ thấy vô nghiệm)

Vậy.........

19 tháng 2 2019

1) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)

2) \(\left(4x-10\right)\left(24+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)

3) \(\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)

a) Ta có: \(A=\left(2x+3\right)^2-2\left(x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=4x^2+12x+9-2\left(2x^2+5x+6x+15\right)+4x^2+20x+25\)

\(=8x^2+32x+34-2\left(2x^2+11x+15\right)\)

\(=8x^2+32x+34-4x^2-22x-30\)

\(=4x^2+10x-4\)

b) Sửa đề: \(B=\left(x^2+x+1\right)^2-\left(x^2-x+1\right)\left(x^2-1\right)\)

Ta có: \(B=\left(x^2+x+1\right)^2-\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=x^4+x^2+1+2x^3+2x^2+2x-\left(x^4-x^2-x^3+x+x^2-1\right)\)

\(=x^4+3x^2+2x^3+2x+1-x^4+x^3-x+1\)

\(=3x^3+3x^2+x+2\)

c) Ta có: \(C=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)

\(=64x^3-48x^3+12x-1-64x^3-12x+48x^2+9\)

\(=8\)

20 tháng 2 2018

\(\text{a) }x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x-1=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\\ \Leftrightarrow t^2-1-24=0\\ \Leftrightarrow t^2-25=0\\ \Leftrightarrow\left(t+5\right)\left(t-5\right)=0\\ \Leftrightarrow\left(x^2+x-1+5\right)\left(x^2+x-1-5\right)=0\\ \Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-6\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{15}{4}\right)\left(x^2+3x-2x-6\right)=0\\ \Leftrightarrow\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}\right]\left[\left(x^2+3x\right)-\left(2x+6\right)\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]\left[x\left(x+3\right)-2\left(x+3\right)\right]=0\\ \Leftrightarrow\left(x-2\right)\left(x+3\right)=0\left(\text{Vì }\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{2;-3\right\}\)

\(\text{b) }\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x^2-4x-7x+28\right)\left(x^2-5x-6x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\)

Đặt \(x^2-11x+29=t\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1-1680=0\\ \Leftrightarrow t^2-1681=0\\ \Leftrightarrow\left(t+41\right)\left(t-41\right)=0\\ \Leftrightarrow\left(x^2-11x+29+41\right)\left(x^2-11x+29-41\right)=0\\ \Leftrightarrow\left(x^2-11x+70\right)\left(x^2-11x-12\right)=0\\ \Leftrightarrow\left(x^2-11x+\dfrac{121}{4}+\dfrac{159}{4}\right)\left(x^2-12x+x-12\right)=0\\ \Leftrightarrow\left[\left(x^2-11x+\dfrac{121}{4}\right)+\dfrac{159}{4}\right]\left[\left(x^2-12x\right)+\left(x-12\right)\right]=0\\ \Leftrightarrow\left[\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}\right]\left[x\left(x-12\right)+\left(x-12\right)\right]=0\\ \Leftrightarrow\left(x+1\right)\left(x-12\right)=0\left(\text{Vì }\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=12\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{-1;12\right\}\)

\(\text{c) }\left(x+2\right)\left(x+3\right)\left(x-5\right)\left(x-6\right)=180\\ \Leftrightarrow\left(x^2+2x-5x-10\right)\left(x^2+3x-6x-18\right)=180\\ \Leftrightarrow\left(x^2-3x-10\right)\left(x^2-3x-18\right)=180\) Đặt \(x^2-3x-14=t\) \(\Leftrightarrow\left(t+4\right)\left(t-4\right)=180\\ \Leftrightarrow t^2-16-180=0\\ \Leftrightarrow t^2-196=0\\ \Leftrightarrow\left(t+14\right)\left(t-14\right)=0\\ \Leftrightarrow\left(x^2-3x-14+14\right)\left(x^2-3x-14-14\right)=0\\ \Leftrightarrow\left(x^2-3x\right)\left(x^2-3x-28\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x^2-7x+4x-28\right)=0\\ \Leftrightarrow x\left(x-3\right)\left[x\left(x-7\right)+4\left(x-7\right)\right]=0\\ \Leftrightarrow x\left(x-3\right)\left(x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+4=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-4\\x=7\end{matrix}\right.\) Vậy tập nghiệm phương trình là \(S=\left\{0;3;-4;7\right\}\)

Bài 1:

a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)

\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)

\(=4x^2-8x-16-5+20x-4x^2-12x-9\)

\(=-30\)

b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)

\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)

\(=-175\)

d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)

\(=-11x^2-32x+3-48+32x+11x^2-44\)

=-89

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

30 tháng 4 2019

a, ( 8x + 5 )( 4x + 3 )( 2x + 1 ) = 9

<=> ( 8x + 5 )[ 2( 4x+3)] [ 4 ( 2x+1 )] = 9* 2 * 4

<=> (8x+5)(8x+6)(8x+4) = 72

Đặt 8x+5 = y ta có phương trình tương đương :

y ( y -1 ) ( y+1) = 72

......................

b, Tương tự phần a nhé

30 tháng 4 2019

c, x^3 + 5x^2 + 5x + 2=0 

<=> x^3 + 1 + 5x^2 + 5x + 1 = 0

<=> (x+1)(x^2 - x +1) + 5x ( x+1 ) + 1 =0

<=> (x+1 ) ( x^2+4x + 1) + 1 = 0