Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge\frac{2017}{2018}\)
\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)
\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)
Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(\frac{x+3}{2015}+\frac{x+2}{2016}+\frac{x+1}{2017}\le-3\)
\(\Leftrightarrow\frac{x+3}{2015}+1+\frac{x+2}{2016}+1+\frac{x+1}{2017}+1\le0\)
\(\Leftrightarrow\frac{x+2018}{2015}+\frac{x+2018}{2016}+\frac{x+2018}{2017}\le0\)
\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)\le0\)
Mà \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}>0\)
⇒ x + 2018 < 0 ⇔ x < - 2018
\(\frac{x+3}{2015}+\frac{x+2}{2016}+\frac{x+1}{2017}\le-3\) \(\Leftrightarrow\frac{x+2018}{2015}+\frac{x+2018}{2016}+\frac{x+2018}{2017}\le0\) \(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)\le0\)
\(\Leftrightarrow x+2018;\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2017}\) khác dấu \(\Leftrightarrow x+2018\le0\Leftrightarrow x\le-2018\)
Vậy .............
sai bạn sửa nhé :))
<=> xy+5x+3y+15=xy+8x+y+8 <=> 3x-2y=7 <=> 9x-6y=21 <=> x=3 <=> x=3
10xy+14x-15y-21=10xy+10x-12y-12 4x-3y=9 8x-6y=18 8.3-6y=18 y=1
\(\left(x-1\right)^4-8\left(x-1\right)^2-9=0\)
\(\left[\left(x-1\right)^2\right]^2-2.\left(x-1\right)^2.4+16-25=0\)
\(\left[\left(x-1\right)^2-4\right]^2-5^2=0\)
\(\left[\left(x-1\right)^2-4-5\right]\left[\left(x-1\right)^2-4+5\right]=0\)
\(\left[\left(x-1\right)^2-9\right]\left[\left(x-1\right)^2+1\right]=0\)
\(\left(x-4\right)\left(x+2\right)\left[\left(x-1\right)^2+1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)