K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

\(7=\sqrt{3x^2-2x+15}+\sqrt{3x^2-2x+8}=\frac{\left(3x^2-2x+15\right)-\left(3x^2-2x+8\right)}{\sqrt{3x^2-2x+15}-\sqrt{3x^2-2x+8}}\\ \)

\(=\frac{7}{a-b}\)=> a-b = 1 và a+b=7

=> dễ dàng tìm x 

NV
14 tháng 10 2019

Đặt \(\left\{{}\begin{matrix}\sqrt{3x^2-2x+15}=a>0\\\sqrt{3x^2-2x+8}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=7\)

Pt trở thành:

\(a+b=a^2-b^2\)

\(\Leftrightarrow a+b=\left(a-b\right)\left(a+b\right)\)

\(\Rightarrow a-b=1\Rightarrow a=b+1\)

\(\Rightarrow\sqrt{3x^2-2x+15}=\sqrt{3x^2-2x+8}+1\)

\(\Leftrightarrow3x^2-2x+15=3x^2-2x+9+2\sqrt{3x^2-2x+8}\)

\(\Leftrightarrow\sqrt{3x^2-2x+8}=3\)

\(\Leftrightarrow3x^2-2x-1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{3}\end{matrix}\right.\)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

11 tháng 9 2020

a) \(x^3+1=2\sqrt[3]{2x-1}\) (1)

Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3=2x-1\)

\(\Rightarrow1=2x-a^3\)

Phương trình (1) khi đó trở thành :

\(x^3+2x-a^3=2a\)

\(\Leftrightarrow\left(x^3-a^3\right)+2\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+2\right)=0\)

\(\Leftrightarrow x=a\)

Do đó : \(x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\)

\(\Leftrightarrow\left(x-1\right).\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

28 tháng 10 2016

\(\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\);

\(\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\)

....

29 tháng 10 2016

Ta có 2x2 - 4x + 3 = 2(x - 1)2 + 1\(\ge1\)

3x2 - 6x + 7 = 3(x - 1)2 + 4 \(\ge4\)

=> VT \(\ge3\)

Ta lại có 2 - x2 + 2x = 3 - (x - 1)2 \(\le3\)

=> VP \(\le0\)

Dấu = xảy ra khi x = 1

4 tháng 7 2019

1   ĐKXD \(x\ge1\)

.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)

=> \(2b^2+3a^2=2x^2+5x-1\)

=> \(2b^2+3a^2-7ab=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)

\(a=2b\)

=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)

=> \(4x^2+3x+5=0\)vô nghiệm

\(a=\frac{1}{3}b\)

=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)

=> \(x^2-8x+10=0\)

<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)

Vậy \(x=4+\sqrt{6}\)

4 tháng 7 2019

ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)

\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)

<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)

 \(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)

Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)

nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)

Vậy x=-2

Em kiểm tra lại đề bài câu trên nhé

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)

\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)

\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)

b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì

\(\Rightarrow b^2-a^2=x^2-3x+2\)

Làm nốt