K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

\(\Leftrightarrow x^4+x-4x-4=0\)

=>x+1=0

hay x=-1

22 tháng 12 2021

\(x^4-3x-4=0\\ x^4+x-4x-4=0\\ x^3\left(x+1\right)-4\left(x+1\right)=0\\ \left(x^3-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x^3-4=0\Leftrightarrow x^3=4\Leftrightarrow x=\sqrt[3]{4}\\x+1=0\Leftrightarrow x=-1\end{matrix}\right.\)

24 tháng 7 2016

Giải các phương trình và hệ phương trình:

a) x2 - \(2\sqrt{5}\)x + 5 = 0

Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)

Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )

24 tháng 7 2016

c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)

Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)

9 tháng 12 2018

\(x^4-3x^3-2x^2+6x+4=0\)

\(\Leftrightarrow x^4-2x^3-2x^2-x^3+2x^2+2x-2x^2+4x+4=0\)

\(\Leftrightarrow x^2\left(x^2-2x-2\right)-x\left(x^2-2x-2\right)-2\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=1+\sqrt{3}\\x=1-\sqrt{3}\end{matrix}\right.\)

28 tháng 2 2020

pt<=>x2(x2-2x+2)+5x(x2-2x+2)+2(x2-2x+2)=0

<=>\(\left[{}\begin{matrix}x^2+5x+2=0\left(1\right)\\x^2-2x+2=0\left(vn\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5+\sqrt{17}}{2}\\x=\frac{-5-\sqrt{17}}{2}\end{matrix}\right.\)

DD
6 tháng 8 2021

\(7x^3+11=3\left(x+y\right)\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y\right)^3+7x^3+11+1=\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3+7x^3+3xy\left(3x+y\right)=\left(x+y\right)^3+3\left(x+y\right)^2+3\left(x+y\right)+1\)

\(\Leftrightarrow8x^3+12x^2y+6xy^2+y^3=\left(x+y+1\right)^3\)

\(\Leftrightarrow\left(2x+y\right)^3=\left(x+y+1\right)^3\)

\(\Leftrightarrow2x+y=x+y+1\)

\(\Leftrightarrow x=1\)

Với \(x=1\):

\(y\left(3+y\right)=4\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-4\end{cases}}\).

6 tháng 8 2021

y = 1

y = -4

NV
19 tháng 6 2019

a/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow2x^2+3x+5+\frac{3}{x}+\frac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+5=0\)

Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\) (\(\left|a\right|\ge2\))

\(\Leftrightarrow2\left(a^2-2\right)+3a+5=0\)

\(\Leftrightarrow2a^2+3a+1=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

Phương trình vô nghiệm

b/ Số hạng cuối là 4 hay 16 bạn? 4 thì mình ko giải được, phân tách casio cũng ko được

c/ ĐKXĐ:\(\left[{}\begin{matrix}-2\le x\le-1\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow2x^2+x+2-5\sqrt{\left(x-2\right)\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)-5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)

\(\Leftrightarrow2a^2+3b^2-5ab=0\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)

20 tháng 6 2019

cảm ơn nhiều nha!!!

5 tháng 2 2017

a) x3+4x2+x-6=0

<=> x3+3x2+x2+3x-2x-6=0

<=> x2(x+3)+x(x+3)-2(x+3)=0

<=> (x+3)(x2+x-2)=0

<=> \(\left[\begin{matrix}x+3=0\\x^2+x-2=0\end{matrix}\right.\)<=> \(\left[\begin{matrix}x=-3\\\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\end{matrix}\right.\)

<=> \(\left[\begin{matrix}x=-3\\x=1\\x=-2\end{matrix}\right.\)

Vậy ...

b) x3-3x2+4=0

<=> x3-2x2-x2+4=0

<=> x2(x-2)-(x-2)(x+2)=0

<=> (x-2)(x2-x-2)=0

<=> \(\left[\begin{matrix}x-2=0\\x^2-x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{matrix}\right.\)

<=> \(\left[\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy ...

5 tháng 2 2017

c) x4+2x3+2x2-2x-3=0

<=> x4+x3+x3+x2+x2+x-3x-3=0

<=> x3(x+1)+x2(x+1)+x(x+1)-3(x+1)=0

<=> (x+1)(x3+x2+x-3)=0

<=> (x+1)(x3-x2+2x2-2x+3x-3)=0

<=> (x+1)[x2(x-1)+2x(x-1)+3(x-1)]=0

<=> (x+1)(x-1)(x2+2x+3)=0

Mà x2+2x+3=x2+2x+1+2=(x+1)2+2>0

<=> (x+1)(x-1)=0

<=>\(\left[\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\)<=> \(\left[\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

Vậy ...

11 tháng 5 2020

ĐKXĐ: x khác 1

Đặt \(\frac{x}{x-1}=a\)

\(x+a=x+\frac{x}{x-1}=x\left(1+\frac{1}{x-1}\right)=\frac{x^2}{x-1}\). Thay vào phương trình ta được

x3+a3+3(x+a)=0<=>x+a=0\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x\ne1\end{matrix}\right.\Leftrightarrow x=0\)

Vậy pt có nghiệm duy nhất x=0

5 tháng 1

Trung Nguyên sai nhé vì x=0 thì pt sẽ có gtri là 2