Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dk \(x\ge-\frac{4}{3}\)
\(x^2-5x+4=8\sqrt{3x+4}-32\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=8\left(\sqrt{3x+4}-4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)-8\frac{\left(\sqrt{3x+4}-4\right)\left(\sqrt{3x+4}+4\right)}{\sqrt{3x+4}+4}=0\)
\(\left(x-1\right)\left(x-4\right)-8.\frac{3\left(x-4\right)}{\sqrt{3x+4}+4}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1-\frac{24}{\sqrt{3x+4}+4}=0\right)\)
đến đây để rồi tự làm nhé ^^
#)Sửa đề : x4+2x3+5x2+4x-12=0
#)Giải :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
a, x4 - 13x2 + 36 = 0
Đặt : x2 = t , t > 0 , ta có :
t2 - 13t + 36 = 0 \(\Leftrightarrow\) t = 9 hay t = 4
- Với t = 9 \(\Rightarrow\) x2 = 9 \(\Rightarrow\) x = + 3
- Với t = 4 \(\Rightarrow\) x2 = 4 \(\Rightarrow\) x = + 2
Vậy phương trình có 4 nghiệm
x1 = 3 ; x2 = -3 ; x3 = 2 ; x4 = -2
b, 3x4 + 7x2 - 10 =0
Đặt : x2 = t , t > 0 , ta có :
3t2 + 7t - 10 = 0
\(\Leftrightarrow\) t = 1 hay t = -\(\frac{10}{3}\) (loại )
- Với t = 1 \(\Rightarrow\) x2 = 1 \(\Rightarrow\) x = +1
Phương trình có hai nghiệm là :
x1 = 1 ; x2 = -1
\(x^4+5x^2-36=0\)
\(\Leftrightarrow x^4-4x^2+9x^2-36=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+9\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+9\right)=0\)
Dễ thấy: \(x^2+9\ge9>0\forall x\) (vô nghiệm)
SUy ra \(x-2=0;x+2=0\Rightarrow x=2;x=-2\)
Đặt t = x2 ( t ≥ 0)
ta có phương trình: t2 + 5t – 36 = 0. Δt = 25 4.1.(-36) = 169
→ t1 = 4 (tmđk); t2 = -9 (loại). Với t = 4 → x2 = 4 → x = 2