Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Sửa đề : x4+2x3+5x2+4x-12=0
#)Giải :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(x^4+2x^3+x^2-2x=0\\ \Leftrightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2-1\right)\cdot\left(x^2+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\)
=> Phương trình đã cho là phương trình vô nghiệm
thôi cho sửa lại ...
\(x^4+2x^3+x^2-2x=0\\ \Rightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2+2x\right)\cdot\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\phương.trình.vô.nghiệm\end{matrix}\right.\)
Vậy tập nghiệm của phương trình đã cho S = {-1 ; 1}
đặt t = 2x-1 ta được
x4-4x2t-12t2=0
x4-6x2t+2x2t-12t2=0
x2(x2-6t)+2t(x2-6t)=0
(x2-6t)(x2+2t)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2-6t=0\\x^2+2t=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2=6t\\x^2=-2t\end{cases}}\)
TH1 x2=6t \(\Leftrightarrow\)x2=6(2x-1) giải pt được x=6+\(\sqrt{30}\)hoặc x=6-\(\sqrt{30}\)
TH2 x2=-2t\(\Leftrightarrow\)x2=-2(2x-1) giải pt ta được x=-2+\(\sqrt{6}\)hoặc x=-2-\(\sqrt{6}\)