Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Huong dan
1) (x² - 5x + 1)(x² - 4) = 6(x - 1)²
<=> [(x² - 4) - 5(x - 1)](x² - 4) - 6(x - 1)² = 0
<=> (x² - 4)² - 5(x - 1)(x² - 4) - 6(x - 1)² = 0
Nhan thay x = 1 khong phai la nghiem => x - 1 ≠ 0 nen co the chia 2 ve cua pt cho (x - 1)² ≠ 0 va dat y = (x² - 4)/(x - 1) ta co pt bac 2 theo y
y² - 5y - 6 = 0 => y = - 1; y = 6
Ban tu giai tip
2) 3√(x³ + 8) = 2x² - 6x + 4 (x ≥ - 2 )
<=> 3√[(x + 2)(x² - 2x + 4)] = 2(x² - 2x + 4) - 2(x + 2)
<=> 2(x + 2) + 3√[(x + 2)(x² - 2x + 4)] - 2(x² - 2x + 4) = 0
Chia 2 ve pt cho √(x² - 2x + 4) = √[(x - 1)² + 3]> 0 va dat y = √[(x + 2)/(x² - 2x + 4)] ta co pt bac 2 theo y:
2y² + 3y - 2 = 0 => y = 1/2 ( loai nghiem y = - 2)
Ban tu giai tiep
#)Sửa đề : x4+2x3+5x2+4x-12=0
#)Giải :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(x^4+5x^2-36=0\)
\(\Leftrightarrow x^4-4x^2+9x^2-36=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+9\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+9\right)=0\)
Dễ thấy: \(x^2+9\ge9>0\forall x\) (vô nghiệm)
SUy ra \(x-2=0;x+2=0\Rightarrow x=2;x=-2\)
Đặt t = x2 ( t ≥ 0)
ta có phương trình: t2 + 5t – 36 = 0. Δt = 25 4.1.(-36) = 169
→ t1 = 4 (tmđk); t2 = -9 (loại). Với t = 4 → x2 = 4 → x = 2
bạn vào google: gõ : http://coccoc.com/search/math#query=x4+%2B+4+%3D+5x+(+x2+-2+)
là ra!