Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)
Cách liên hợp
ĐK \(x\ge-2\)
PT <=> \(\sqrt{x+2}+5x+2\ne0\)
\(25x^2+19x+2+2\left(x+1\right)\left(\sqrt{x+2}-5x-2\right)=0\)
Xét \(\sqrt{x+2}+5x+2=0\)=> \(x=\frac{-19-\sqrt{161}}{50}\)
Thay vào ta thấy nó không phải là nghiệm của PT
=> \(\sqrt{x+2}+5x+2\ne0\)
<=> \(25x^2+19x+2+2\left(x+1\right).\frac{x+2-\left(5x+2\right)^2}{\sqrt{x+2}+5x+2}=0\)
<=> \(25x^2+19x+2+2\left(x+1\right).\frac{-25x^2-19x-2}{\sqrt{x+2}+5x+2}=0\)
<=> \(\orbr{\begin{cases}25x^2+19x+2=0\\1-\frac{2\left(x+1\right)}{\sqrt{x+2}+5x+2}=0\left(2\right)\end{cases}}\)
Pt (2)
<=> \(\sqrt{x+2}=-3x\)
<=> \(\hept{\begin{cases}x\le0\\9x^2-x-2=0\end{cases}}\)=> \(x=\frac{1-\sqrt{73}}{18}\)(TM ĐKXĐ)
Pt (1) có nghiệm \(x=\frac{-19+\sqrt{161}}{50}\)(Tm ĐKXĐ)
Vậy Pt có nghiệm \(S=\left\{\frac{1-\sqrt{73}}{18};\frac{-19+\sqrt{161}}{50}\right\}\)
Cách đặt ẩn phụ không hoàn toàn
ĐK\(x\ge-2\)
PT
<=> \(15x^2+6x+2\left(x+1\right)\sqrt{x+2}-\left(x+2\right)=0\)
Đặt \(\sqrt{x+2}=a\left(a\ge0\right)\)
=> \(15x^2+6x+2\left(x+1\right).a-a^2=0\)
<=> \(\left(15x^2+2ax-a^2\right)+\left(6x+2a\right)=0\)
<=> \(\left(5x-a\right)\left(3x+a\right)+2\left(3x+a\right)=0\)
<=> \(\left(3x+a\right)\left(5x-a+2\right)=0\)
<=> \(\orbr{\begin{cases}3x+a=0\\5x-a+2=0\end{cases}}\)
+ 3x+a=0
=> \(3x+\sqrt{2+x}=0\)
=> \(\hept{\begin{cases}x\le0\\9x^2-x-2=0\end{cases}}\)=> \(x=\frac{1-\sqrt{73}}{18}\)(TM ĐKXĐ)
+ 5x-a+2=0
=> \(5x+2=\sqrt{x+2}\)
=> \(\hept{\begin{cases}x\ge-\frac{2}{5}\\25x^2+19x+2=0\end{cases}}\)=> \(x=\frac{-19+\sqrt{161}}{50}\)(TM ĐKXĐ)
vậy \(S=\left\{\frac{-19+\sqrt{161}}{50};\frac{1-\sqrt{73}}{18}\right\}\)
\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)
\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)
Chắc tới đây bạn làm đc rồi nhỉ
1. \(\Rightarrow3x^2-1=25\Rightarrow3x^2=26\Rightarrow x^2=\frac{26}{3}\Rightarrow x=\sqrt{\frac{26}{3}};x=-\sqrt{\frac{26}{3}}\)
1) Vế trái \(\ge\) 0 với x thỏa mãn điều kiện 3x2 - 1 \(\ge\) 0
Vế phải = -5 < 0
=> Vế trái luôn > Vế phải
Vậy pt vô nghiệm
2) \(VT=\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\ge\sqrt{4}+\sqrt{16}=2+4=6\) với mọi x
VP = 6 - (x2 + 2x + 1) = 6 - (x + 1)2 \(\le\) 6 với mọi x
Để VT = VP <=> (x + 1)2 = 0 <=> x = -1
Vậy x = -1 là nghiệm của PT
\(ĐK:2\le x\le4\)
\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\Leftrightarrow\left(\sqrt{x-2}-1\right)+\left(\sqrt{4-x}-1\right)=2x^2-5x-3\)\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}=\left(x-3\right)\left(2x+1\right)\)\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-2x-1\right)=0\)
Suy ra x - 3 = 0 nên x = 3
Vậy phương trình có 1 nghiệm duy nhất là 3
Câu hỏi của tran huu dinh - Toán lớp 8 - Học toán với OnlineMath
Đây nè bạn
mơn bạn mik cũng đặt ẩn phụ hoàn toàn
zậy bạn lm giúp mik hai câu cúi nhé!!!!
\(x^2+5x+1=\left(x+5\right)\sqrt{x^2+1}\)
<=> \(\left(x+5\right)\left(x-\sqrt{x^2+1}\right)=-1\)
Nhân liên hợp ta có
\(x+5=x+\sqrt{x^2+1}\)
=> \(x^2+1=25\)
=> \(x=\pm2\sqrt{6}\)
Vậy \(x=\pm2\sqrt{6}\)
nhân liên hợp là j ạ