K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

xin lỗi mk mới học lớp 6 nên ko biết!

ủng hộ mk nha!

30 tháng 1 2017

Phương trình... e k bt

8 tháng 6 2017

=>xy(1-1+2-4)=10

=>xy(-2)=10

=>xy=-5

tự tìm

8 tháng 6 2017

=> xy( 1-1+2-1) = 10

=> xy(-2) = 10

=> xy = -5

Còn nữa

16 tháng 2 2019

\(x^2-y^2+2x-4y-10=0\)\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)\(\Leftrightarrow\left[\left(x+1\right)-\left(y+2\right)\right]\left[\left(x+1\right)+\left(y+2\right)\right]=7\)\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7.\)

Mà x, y nguyên dương nên x - y - 1 và x + y + 3 nguyên => x - y - 1 và x + y + 3 là ước nguyên của 7. Do đó ta có bảng sau:

x - y - 11-17-7
x + y + 37-71-1
x - y208-6
x + y4-10-2-4
x3-53-5
y1-5-51
Kết luậnthoả mãnx, y < 0 (loại)y < 0 (loại)x < 0 (loại)

Vậy với x = 3, y = 1 thì thoả mãn \(x^2-y^2+2x-4y-10=0.\)

11 tháng 9 2018

a)=(x2+ y2-2xy)+1

=(x-y)2+1> hoặc = 1

suy ra:GTNN=1 

b)=x2-2x2+4-4+9/2

=(x-2)2+1/2 > hoặc bằng 1/2

suy ra GTNN=1/2 khi x-2=0 khi x=2

C)=2(x2+ 4x +5)

=2[(x2+ 2x2 + 4) +1]

=2[(x+2)2+1]

=2(x+2)2+2>hoặc bằng 2

suy ra GTNN=2 khi 2(x+2)2=0 khi x+2=0 khi x=-2

1 tháng 10 2019

\(x^2+y^2-2xy+1\)

\(=\left(x-y\right)^2+1\ge1\)

=> GTNN của biểu thức bằng  1

\(\Leftrightarrow\left(x-y\right)^2=0\)

\(\Leftrightarrow x-y=0\)

Vậy ................

20 tháng 1 2020

\(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1+2-x\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)

Vậy tập nghiệm của ptr là : \(S=\left\{\frac{1}{2};-1\right\}\)

20 tháng 1 2020

\(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0.\)

\(\Leftrightarrow4x^2-4x+1+4x-2-2x^2+x=0\)

\(\Leftrightarrow2x^2+x-1=0\)

\(\Leftrightarrow2x^2+2x-x-1=0\)

\(\Leftrightarrow\left(2x^2+2x\right)-\left(x+1\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)-\left(x+1\right)=0\)

TH1: 2x - 1 = 0

=> x = 1/2

Th2: x + 1 = 0

=> x = -1

\(\Rightarrow x\in\left\{\frac{1}{2};-1\right\}\)

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

12 tháng 7 2018

Cậu vào câu hỏi tương tự có đấy

1 tháng 2 2020

1) \(x^4-2x^2-144x+1295=0\)

\(\Rightarrow\)Cậu xem lại đề thử xem nhé !

2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)

\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)

\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)

\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(x-2=0\)

hoặc \(x^2+x+4=0\)

\(\Leftrightarrow\)\(x=-3\left(tm\right)\)

hoặc   \(x=2\left(tm\right)\)

hoặc  \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)

3) \(x^4-2x^3+4x^2-3x-10=0\)

\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)

\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(x-2=0\)

hoặc \(x^2-x+5=0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

hoặc \(x=2\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)