Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-2x+6\right)\left(x^2-8x+4\right)+\left(5x+1\right)\left(x+1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow x^8-5x^2+7x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)
Xong rồi nhé
\(\left(x^2-2x+6\right)\left(x^2-8x-4\right)+\left(5x+1\right)\)\(\left(x-1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=\)\(0\)
\(\Leftrightarrow x^8-5x^2+7x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)
~ 양 셜 김 ~
\(pt\Leftrightarrow x^4+5x^2\left(x+1\right)-6\left(x+1\right)^2=0\)
Đặt \(a=x^2;b=x+1\) ta có pt
\(a^2+5ab-6b^2=0\Leftrightarrow\left(a-b\right)\left(a+6b\right)=0\)
<=> a =b ; a = -6b
Giải từng trường hợp
Đấm vào chữ đúng giùm em ạ
Các đại ca đẹp zai,các cô nương xinh đẹp
Ai tick em là người như thế,100 người thôi.
Ming no mo ka djd
x4-4x3-9x2+36x = 0
⇔ x (x3 - 4x2 - 9x +36 ) = 0
⇔\(\begin{cases} x = 0 \\ x^3 -4x^2 -9x +36 = 0 (1) \end{cases}\)
(1) ⇔ x3 - 4x2 - 9x +36 = 0
x1 = -3 (Nhận)
x2 = 4 (Nhận)
Vậy S = {0;-3;4}
Câu c;d giải \(\Delta\)
Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự
a/ \(x^4-2x^2-8=0\left(1\right)\)
Đặt: \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Rightarrow t^2-2t-8=0\)
( a = 1; b = -2; c = -8 )
\(\Delta=b^2-4ac\)
\(=\left(-2\right)^2-4.1.\left(-8\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)
\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)
Vậy: S = {-2;2}
bạn vào google: gõ : http://coccoc.com/search/math#query=x4+%2B+4+%3D+5x+(+x2+-2+)
là ra!
Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.
Câu 1: Mình làm mẫu câu a thôi nhé.
a/ \(x^2-2\sqrt{3}x-6=0\)
( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )
\(\Delta=b^2-4ac\)
\(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)
Vậy:..
Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)
( a = 1; b = -2(2m+1); c = 4m^2 + 2 )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)
\(=4\left(4m^2+4m+1\right)-16m^2-8\)
\(=16m^2+16m+4-16m^2-8\)
\(=16m-4\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)
a) (3x2 – 5x + 1)(x2 – 4) = 0
=> 3x2 – 5x + 1 = 0 => x =
hoặc x2 – 4 = 0 => x = ±2.
b) (2x2 + x – 4)2 – (2x – 1)2 = 0
⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0
⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0
=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0
X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5
a) (3x2 – 5x + 1)(x2 – 4) = 0
=> 3x2 – 5x + 1 = 0 => x =
hoặc x2 – 4 = 0 => x = ±2.
b) (2x2 + x – 4)2 – (2x – 1)2 = 0
⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0
⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0
=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0
X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5
Nhớ like nha
please
Huong dan
1) (x² - 5x + 1)(x² - 4) = 6(x - 1)²
<=> [(x² - 4) - 5(x - 1)](x² - 4) - 6(x - 1)² = 0
<=> (x² - 4)² - 5(x - 1)(x² - 4) - 6(x - 1)² = 0
Nhan thay x = 1 khong phai la nghiem => x - 1 ≠ 0 nen co the chia 2 ve cua pt cho (x - 1)² ≠ 0 va dat y = (x² - 4)/(x - 1) ta co pt bac 2 theo y
y² - 5y - 6 = 0 => y = - 1; y = 6
Ban tu giai tip
2) 3√(x³ + 8) = 2x² - 6x + 4 (x ≥ - 2 )
<=> 3√[(x + 2)(x² - 2x + 4)] = 2(x² - 2x + 4) - 2(x + 2)
<=> 2(x + 2) + 3√[(x + 2)(x² - 2x + 4)] - 2(x² - 2x + 4) = 0
Chia 2 ve pt cho √(x² - 2x + 4) = √[(x - 1)² + 3]> 0 va dat y = √[(x + 2)/(x² - 2x + 4)] ta co pt bac 2 theo y:
2y² + 3y - 2 = 0 => y = 1/2 ( loai nghiem y = - 2)
Ban tu giai tiep