\(\sqrt{x-1}\) ) =5x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2023

\(x^2+2\left(2+\sqrt{x-1}\right)=5x\)

\(\Leftrightarrow x^2+4+2\sqrt{x-1}-5x=0\)

\(\Leftrightarrow x^2-5x+2\sqrt{x-1}+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

3 tháng 3 2023

bạn làm chi tiết hơn được ko ạ

 

6 tháng 4 2017

Cau nay hinh nhu X cug = 1

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

9 tháng 7 2019

\(x^2+5x+1=\left(x+5\right)\sqrt{x^2+1}\)

<=> \(\left(x+5\right)\left(x-\sqrt{x^2+1}\right)=-1\)

Nhân liên hợp ta có

\(x+5=x+\sqrt{x^2+1}\)

=> \(x^2+1=25\)

=> \(x=\pm2\sqrt{6}\)

Vậy \(x=\pm2\sqrt{6}\)

9 tháng 7 2019

nhân liên hợp là j ạ

1 tháng 11 2020

\(ĐK:2\le x\le4\)

\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\Leftrightarrow\left(\sqrt{x-2}-1\right)+\left(\sqrt{4-x}-1\right)=2x^2-5x-3\)\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}=\left(x-3\right)\left(2x+1\right)\)\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-2x-1\right)=0\)

Suy ra x - 3 = 0 nên x = 3

Vậy phương trình có 1 nghiệm duy nhất là 3

26 tháng 9 2017

ĐK : \(x\ge2\)

\(pt\Leftrightarrow\left(x^2+5x+8\right)^2=4\left(x-2\right)\)

\(\Leftrightarrow x^4+25x^2+64+10x^3+80x+16x^2=4x-8\)

\(\Leftrightarrow x^4+10x^3+41x^2+80x+64=4x-8\)

\(\Leftrightarrow x^4+10x^3+41x^2+76x+72=0\)

\(\Leftrightarrow\left(x^4+10x^3+25x^2\right)+\left(16x^2+76x+\frac{361}{4}\right)-\frac{81}{4}=0\)

\(\Leftrightarrow\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2-\frac{81}{4}=0\)(*)

Theo đkxđ thì \(x\ge2\) nên \(\left(x^2+5x\right)^2\ge\left(2^2+5.2\right)^2=196>\frac{81}{4}\)

Nên \(\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2>\frac{81}{4}\) nên \(\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2-\frac{81}{4}>0\)

Từ đó => (*) không xảy ra hay pt trên vô nghiệm

25 tháng 9 2017

phương trình này vô nghiệm

NV
9 tháng 8 2020

6.

Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)

\(\Leftrightarrow5x^2+6x+5=16x^2\)

\(\Leftrightarrow11x^2-6x-5=0\)

\(\Rightarrow x=1\)

NV
9 tháng 8 2020

4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)

5.

\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)

Đặt \(\sqrt{x^2+x+6}=t>0\)

\(t^2-\left(2x+1\right)t+6x-6=0\)

\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)

29 tháng 12 2016

đặt ẩn bình phương.....

13 tháng 7 2019

Cách liên hợp 

ĐK \(x\ge-2\)

PT <=> \(\sqrt{x+2}+5x+2\ne0\)

\(25x^2+19x+2+2\left(x+1\right)\left(\sqrt{x+2}-5x-2\right)=0\)

Xét \(\sqrt{x+2}+5x+2=0\)=> \(x=\frac{-19-\sqrt{161}}{50}\)

Thay vào ta thấy nó không phải là nghiệm của PT

=> \(\sqrt{x+2}+5x+2\ne0\)

<=> \(25x^2+19x+2+2\left(x+1\right).\frac{x+2-\left(5x+2\right)^2}{\sqrt{x+2}+5x+2}=0\)

<=> \(25x^2+19x+2+2\left(x+1\right).\frac{-25x^2-19x-2}{\sqrt{x+2}+5x+2}=0\)

<=> \(\orbr{\begin{cases}25x^2+19x+2=0\\1-\frac{2\left(x+1\right)}{\sqrt{x+2}+5x+2}=0\left(2\right)\end{cases}}\)

Pt (2)

<=> \(\sqrt{x+2}=-3x\)

<=> \(\hept{\begin{cases}x\le0\\9x^2-x-2=0\end{cases}}\)=> \(x=\frac{1-\sqrt{73}}{18}\)(TM ĐKXĐ)

Pt (1) có nghiệm \(x=\frac{-19+\sqrt{161}}{50}\)(Tm ĐKXĐ)

Vậy Pt có nghiệm \(S=\left\{\frac{1-\sqrt{73}}{18};\frac{-19+\sqrt{161}}{50}\right\}\)

13 tháng 7 2019

Cách đặt ẩn phụ không hoàn toàn 

ĐK\(x\ge-2\)

PT 

<=> \(15x^2+6x+2\left(x+1\right)\sqrt{x+2}-\left(x+2\right)=0\)

Đặt \(\sqrt{x+2}=a\left(a\ge0\right)\)

=> \(15x^2+6x+2\left(x+1\right).a-a^2=0\)

<=> \(\left(15x^2+2ax-a^2\right)+\left(6x+2a\right)=0\)

<=> \(\left(5x-a\right)\left(3x+a\right)+2\left(3x+a\right)=0\)

<=> \(\left(3x+a\right)\left(5x-a+2\right)=0\)

<=> \(\orbr{\begin{cases}3x+a=0\\5x-a+2=0\end{cases}}\)

+ 3x+a=0

=> \(3x+\sqrt{2+x}=0\)

=> \(\hept{\begin{cases}x\le0\\9x^2-x-2=0\end{cases}}\)=> \(x=\frac{1-\sqrt{73}}{18}\)(TM ĐKXĐ)

+ 5x-a+2=0

=> \(5x+2=\sqrt{x+2}\)

=> \(\hept{\begin{cases}x\ge-\frac{2}{5}\\25x^2+19x+2=0\end{cases}}\)=> \(x=\frac{-19+\sqrt{161}}{50}\)(TM ĐKXĐ)

vậy \(S=\left\{\frac{-19+\sqrt{161}}{50};\frac{1-\sqrt{73}}{18}\right\}\)