Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia
\(2x^2+2x+1=\sqrt{4x+1}\)
\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)
\(4x^4+8x^3+8x^2+4x+1=4x+1\)
\(\Leftrightarrow4x^4+8x^3+8x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=0\)
\(4x^2+\sqrt{2x+1}+6=12x\)
Đk:\(x\ge-\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2x+1}=12-4x^2-6\)
Bình phương 2 vế
\(2x+1=16x^4-96x^3+192x^2-144x+36\)
..... thua
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
gợi ý nhé
a (=) 2x.( 4x2+1) = (3x+2). căn(3x+1) ( x>=-1/3)
đặt 2x =a
căn (3x+1) = b (b>=0)
ta có hpt sau a.(a2 +1)=b.(b2+1) (1)
3a-2b2= -2 (2)
giải (1) (=) a3 + a = b3 + b
(=) (a-b).(a2+ab+b2+1) = 0 =) a=b ( vì a2+ab+b2+1>0)
phần còn lại tự giải nhé
b (=) (x+1).(x2+2x+2)=(x+2) . căn(x+1) (x>=-1)
(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0
=) x=-1
hay căn(x+1) . (x2+2x+2) -x-2=0
cách 1 giải phổ thông ( chuyển vế rồi bình phương)
cách 2 đặt ẩn phụ và lập hệ
đặt căn(x+1)=a (a>=0)
=) a.[x(a2+1)+2] = a2+1 và a2 - x =1
tự giải nhé
c,tạm thời chưa nghĩ ra
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)
\(\Leftrightarrow x^2-4x+3=6\sqrt{2x+3}-18\)ĐK:\(x\ge\frac{-3}{2}\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-6\left(\frac{6-2x}{3+\sqrt{2x+3}}\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[x-1+\frac{12x-36}{3+\sqrt{2x+3}}\right]=0\)
Ta thấy bthức trong ngoặc vuông lớn hơn 0 với\(x\ge\frac{-3}{2}\)
Vậy x=3.
x2 - 4x + 21 = 6
<=> x2 - 4x + 21 - 6 = 0
<=> x2 - 4x + 15 = 0 (1)
\(\Delta\)' = (-2)2 - 1. 15 = -11 < 0
=> Pt (1) vô nghiệm
Vậy pt đã cho vô nghiệm