K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

a/ \(\left(x^2+2x+8\right)\left(x^2+13x+8\right)=0\)

b/ \(\hept{\begin{cases}x^3-y^3=3\left(x-y\right)\left(1\right)\\x+y=-1\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)

Tơi đây đơn giản rồi nhe

25 tháng 10 2015

a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2 

=> 5x^2 = 5 hoặc 5x^2 = 1 

b) pt <=> l(x-1)^2l = x + 2 

VÌ ( x - 1 )^2 >=  0  => l( x - 1 )^2 l = ( x- 1 )^2 

pt <=> x^2 - 2x + 1 = x + 2 <=>

 x^2 - 3x - 1 = 0 

c) l2x-5l - l2x^2 - 7x + 5 l =  0 

<=> l2x-5l - l ( 2x-5)(x-1) l = 0 

<=> l2x-5l ( 1 - l x - 1 l = 0 

<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0 

d); e lập bảng xét dấu sau đó xét ba trường hợ p ra 

12 tháng 5 2016

cái pt thứ 2 bạn nhân 2 vế vs x

Sau đó chuyển hết sang 1 vế,,,dùng máy băm nghiệm

12 tháng 5 2016

x4+x3-6x3-6x2+6x2+6x+4x+4=0

27 tháng 2 2018

\(x^4+2x^3+x^2-2x=0\\ \Leftrightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2-1\right)\cdot\left(x^2+2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\)

=> Phương trình đã cho là phương trình vô nghiệm

28 tháng 2 2018

thôi cho sửa lại ...

\(x^4+2x^3+x^2-2x=0\\ \Rightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2+2x\right)\cdot\left(x^2-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\phương.trình.vô.nghiệm\end{matrix}\right.\)

Vậy tập nghiệm của phương trình đã cho S = {-1 ; 1}

NV
17 tháng 9 2019

Nhận thấy \(x=0\) không phải nghiệm

\(\Leftrightarrow\left(x+1\right)\left(x+8\right)\left(x+2\right)\left(x+4\right)=28x^2\)

\(\Leftrightarrow\left(x^2+8+9x\right)\left(x^2+8+6x\right)=28x^2\)

\(\Leftrightarrow\left(\frac{x^2+8+9x}{x}\right)\left(\frac{x^2+8+6x}{x}\right)=28\)

\(\Leftrightarrow\left(x+\frac{8}{x}+9\right)\left(x+\frac{8}{x}+6\right)-28=0\)

Đặt \(x+\frac{8}{x}+6=a\) ta được:

\(\left(a+3\right).a-28=0\)

\(\Rightarrow a^2+3a-28=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{8}{x}+6=4\\x+\frac{8}{x}+6=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+8=0\\x^2+13x+8=0\end{matrix}\right.\) \(\Leftrightarrow...\)