K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

pt đã cho \(\Leftrightarrow x^2+x+2-\left(2x+3\right)\sqrt{x^2+x+2}+x^2+x-1=-\left(2x+3\right)\)

\(\Leftrightarrow x^2+x+2-\left(2x+3\right)\sqrt{x^2+x+2}+x^2+3x+2=0\)

Đặt \(t=\sqrt{x^2+x+2}\left(t\ge0\right)\)  pt trở thành

\(t^2-\left(2x+3\right)t+x^2+3x+2=0\) (*)

pt (*) có biệt thức \(\Delta=\left(2x+3\right)^2-4\left(x^2+3x+2\right)=1\)

\(t_1=\frac{2x+3+1}{2}=x+2\) \(\Leftrightarrow\begin{cases}x\ge-2\\\sqrt{x^2+x+2}=x+2\end{cases}\Leftrightarrow x=-\frac{2}{3}}\)

 \(t_2=\frac{2x+3-1}{2}=x+1\) 

\(\Leftrightarrow\begin{cases}x\ge-1\\\sqrt{x^2+x+2}=x+1\end{cases}\Leftrightarrow x=1}\)

 

 

29 tháng 10 2016

x=1

x=-0,(6)

24 tháng 7 2016

Giải các phương trình và hệ phương trình:

a) x2 - \(2\sqrt{5}\)x + 5 = 0

Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)

Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )

24 tháng 7 2016

c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)

Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)

NV
5 tháng 6 2020

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-4x+4-6x+3-2\left(x-2\right)\sqrt{2x-1}>0\)

\(\Leftrightarrow\left(x-2\right)^2-3\left(2x-1\right)-2\left(x-2\right)\sqrt{2x-1}>0\)

Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2-3b^2-2ab>0\)

\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)>0\)

Do \(b\ge0\) nên BPT\(\Leftrightarrow\left[{}\begin{matrix}a>3b\\a< -b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2>3\sqrt{2x-1}\\x-2< -\sqrt{2x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2>3\sqrt{2x-1}\\2-x>\sqrt{2x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+4>9\left(2x-1\right)\left(với.x\ge2\right)\\x^2-4x+4>2x-1\left(với.x< 2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-22x+13>0\\x^2-6x+5>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>11+6\sqrt{3}\\\frac{1}{2}\le x< 1\end{matrix}\right.\)

20 tháng 5 2020

em cám ơn thầy nhiều

NV
20 tháng 5 2020

\(\Leftrightarrow x^2+3-\left(6x+1\right)\sqrt{x^2+3}+9x^2+3x-2=0\)

Đặt \(\sqrt{x^2+3}=t\)

\(\Rightarrow t^2-\left(6x+1\right)t+9x^2+3x-2=0\)

\(\Delta=\left(6x+1\right)^2-4\left(9x^2+3x-2\right)=9\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{6x+1+3}{2}=3x+2\\t=\frac{6x+1-3}{2}=3x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3x+2\left(x\ge-\frac{2}{3}\right)\\\sqrt{x^2+2}=3x-1\left(x\ge\frac{1}{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2=\left(3x+2\right)^2\\x^2+2=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow...\)

26 tháng 3 2020
https://i.imgur.com/dl21EBZ.jpg