K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

Giải phương trình không có vế phải thì giải bằng niềm tin à bạn?

4 tháng 3 2019

Với dạng bài này ta chỉ việc chia hoocne là ra nhé!

\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)

\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

4 tháng 3 2019
https://i.imgur.com/1LBiPm6.jpg
AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

\((x^3-x^2)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2(x-1)-4(x^2-2x+1)=0\)

\(\Leftrightarrow x^2(x-1)-4(x-1)^2=0\)

\(\Leftrightarrow (x-1)[x^2-4(x-1)]=0\)

\(\Leftrightarrow (x-1)(x^2-4x+4)=0\)

\(\Leftrightarrow (x-1)(x-2)^2=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ x=2\end{matrix}\right.\)

19 tháng 8 2017

c.

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Giải phương trình

  10. 10

    Đơn giản biểu thức

  11. 11

    Giải phương trình

  12. 12

    Đơn giản biểu thức

  13. 13

    Lời giải thu được

19 tháng 8 2017

a,

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Đơn giản biểu thức

  10. 10

    Lời giải thu được

15 tháng 3 2018

\(x^4+9=5x\left(3-x^2\right)\)

\(\Leftrightarrow x^4+9=15x-5x^3\)

\(\Leftrightarrow x^4+5x^3-15x+9=0\)

\(\Leftrightarrow x^4-x^3+6x^3-6x^2+6x^2-6x-9x+9=0\)

\(\Leftrightarrow\left(x^4-x^3\right)+\left(6x^3-6x^2\right)+\left(6x^2-6x\right)-\left(9x-9\right)=0\)

\(\Leftrightarrow x^3\left(x-1\right)+6x^2\left(x-1\right)+6x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+6x^2+6x-9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+3x^2+9x-3x-9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+3\right)+3x\left(x+3\right)-3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(x^2+3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\\x^2+3x-3=0\end{matrix}\right.\)

Ta có: \(x^2+3x-3=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{21}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{21}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{2}\\x=\dfrac{-3-\sqrt{21}}{2}\end{matrix}\right.\)

Vậy: \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x=\dfrac{-3+\sqrt{21}}{2}\\x=\dfrac{-3-\sqrt{21}}{2}\end{matrix}\right.\)