Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x =-2 vào phương trình :
\(4.\left(-2\right)^2-25+k^2+4k.\left(-2\right)=0\)
\(\Leftrightarrow16-25+k^2-8k=0\)
\(\Leftrightarrow k^2-8k-9=0\)
\(\Leftrightarrow\left(k-9\right)\left(k+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}k-9=0\\k+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}k=9\\k=-1\end{cases}}\)
Vậy để phương trình nhận x =-2 làm nghiệm \(\Leftrightarrow k\in\left\{9;-1\right\}\)
\(\)
1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)
Vậy ...................
b/ ĐKXĐ:\(x\ne2;x\ne5\)
.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)
\(\Leftrightarrow2x^2-10x=0\)
\(\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)
Vậy ..............
`Answer:`
`1.`
a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)
b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)
\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)
\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)
\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)
\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)
\(\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)
`2.`
\(ĐKXĐ:x\ne-m-2;x\ne m-2\)
Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)
a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)
b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì
\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)
a) (x - 4)^3 = (x + 4)(x^2 - x - 16)
<=> x^3 - 8x^2 + 16x - 4x^2 + 32x - 64 = x^3 - x^2 - 16x + 4x^2 - 4x - 64
<=> -12x^2 + 48x - 64 = 3x^2 - 20
<=> 12x^2 - 48x + 64 + 3x^2 - 20 = 0
<=> 15x^2 - 68x = 0
<=> x(15x - 68) = 0
<=> x = 0 hoặc 15x - 68 = 0
<=> x = 0 hoặc 15x = 68
<=> x = 0 hoặc x = 68/15
b) \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\) (ĐKXĐ: x khác 0, x khác -2)
<=> \(\frac{x+2}{x}=\frac{\left(x+1\right)\left(x+4\right)}{x\left(x+2\right)}=\frac{x}{x+2}\)
<=> x(x + 2) + 2(x + 2) = (x + 1)(x + 4) + x^2
<=> x^2 + 2x + 2x + 4 = x^2 + 4x + x + 4 + x^2
<=> x^2 + 4x + 4 = 2x^2 + 5x + 4
<=> x^2 + 4x = 2x^2 + 5x
<=> x^2 + 4x - 2x^2 - 5x = 0
<=> -x^2 - x = 0
<=> x(x + 1) = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 (ktm) hoặc x = -1 (tm)
Vậy: nghiệm của phương trình là: -1
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............