Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
\(ĐKXĐ:x\ne0\)
\(\frac{x-1}{x^2-x+1}-\frac{x+1}{x^2+x+1}=\frac{10}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{10}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow\frac{x^3-1-x^3-1}{\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{10}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow\frac{-2}{\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{10}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow\frac{-2x-10}{x\left(x^2-x+1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow-2x-10=0\)
\(\Leftrightarrow x=-5\)
Vậy \(x=-5\)là nghiệm của phương trình.
pt <=> x^3-x^2+x+x^2-x+1+x^2+2=x^3+2x
<=> x^3+x^2+3 = x^3+2x
<=> x^3+x^2+3-x^3-2x=0
<=> x^2-2x+3 = 0
<=> (x^2-2x+1)+2=0
<=> (x-1)^2 = -2
=> pt vô nghiệm vì (x-1)^2 >= 0
Tk mk nha
(x2+x+1)2=3(x4+x2+1)
<=>x4+x2+1+2x3+2x2+2x=3x4+3x2+3
<=>x4+2x3+3x2+2x+1=3x4+3x2+3
<=>2x4-2x3-2x+2=0
<=>2x3.(x-1)-2.(x-1)=0
<=>2.(x-1)(x3-1)=0
<=>2.(x-1)(x-1)(x2+x+1)=0
<=>2.(x-1)2.(x2+x+1)=0
<=>x-1=0 ( vì x2+x+1=(x+1/2)2+3/4 >0))
<=>x=1
<=> x4+x2+1+2x3+2x2+2x=3x4+3x23
<=> 2x3+2x=2x4+2
<=> -2x4+2x3+2x-2=0
<=> -2x3(x-1) +2(x-1)=0
<=> (-2)(x-1)(x3-1)=0
<=> (-2)(x-1)2(x2+2x+1)
<=> (-2)(x-1)2((x+1/2)2+3/4)
<=> x-1=0
<=> x=0
\(\left(x+1\right)^2\left(1+\frac{2}{x}\right)^2+\left(1+\frac{1}{x}\right)^2=8\left(1+\frac{2}{x}\right)^2\left(ĐK:x\ne0\right)\)
\(\Leftrightarrow\left[\left(x+1\right)\left(1+\frac{2}{x}\right)\right]^2+\left(\frac{x+1}{x}\right)^2=8\left(\frac{x+2}{x}\right)^2\)
\(\Leftrightarrow\left[\left(x+1\right)\cdot\frac{x+2}{x}\right]^2+\frac{\left(x+1\right)^2}{x^2}=8\cdot\frac{\left(x+2\right)^2}{x^2}\)
\(\Leftrightarrow\left[\frac{\left(x+1\right)\left(x+2\right)}{x}\right]^2+\frac{x^2+2x+1}{x^2}=\frac{8\left(x+2\right)^2}{x^2}\)
\(\Leftrightarrow\left(\frac{x^2+3x+2}{x}\right)^2+\frac{x^2+2x+1}{x^2}=\frac{8x^2+32x+32}{x^2}\)
\(\Leftrightarrow\frac{\left(x^2+3x+2\right)^2}{x^2}+\frac{x^2+2x+1}{x^2}=\frac{8x^2+32x+32}{x^2}\)
\(\Leftrightarrow\frac{x^4+13x^2+4+6x^3+12x}{x^2}+\frac{x^2+2x+1}{x^2}-\frac{8x^2+32x+32}{x^2}=0\)
\(\Leftrightarrow\frac{x^4+6x^2-27+6x^3-18x}{x^2}=0\)
=> \(x^4+6x^3+6x^2-18x-27=0\)
<=> \(x^4+3x^3+3x^3+9x^2-3x^2-9x-9x-27=0\)
<=> \(x^3\left(x+3\right)+3x^2\left(x+3\right)-3x\left(x+3\right)-9\left(x+3\right)=0\)
<=> \(\left(x+3\right)\left(x^3+3x^2-3x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^3+3x^2-3x-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\pm\sqrt{3}\end{cases}\left(tmđk\right)}}\)
Đk:\(x\ne0;x\ne-1;x\ne-2;x\ne-3;x\ne-4\)
\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=1\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}=1\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}=1\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+4}=1\)
\(\Leftrightarrow\frac{\left(x+4\right)}{x\left(x+4\right)}-\frac{x}{x\left(x+4\right)}=1\)
\(\Leftrightarrow\frac{x+4-x}{x\left(x+4\right)}=1\)
\(\Leftrightarrow x+4-x=x\left(x+4\right)\)
\(\Leftrightarrow-x^2-4x+4=0\)
\(\Leftrightarrow-\left(x+2\right)^2=-8\)
\(\Leftrightarrow x=\pm\sqrt{8}-2\)