K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

/x-2/=x+2

      *x-2=x+2

<=>x-x=2+2

<=>0x = 4(loại)

     *-(x-2)=x+2

<=>-x+2=x+2

<=>-x-x=2-2

<=>-2x=0

<=> x = 0

     2x(3x-5)-(5-3x)=0

<=>6x2-10x-5+3x=0

<=>6x2-7x-5=0

Denta=(-7)2-4.6.(-5)=149

x1=7+√149/12

x2=7-√149/12

7 tháng 9 2020

a) \(\left|x-2\right|=x+2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=-\left(x+2\right)\\x-2=x+2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=-x-2\\0x=4\end{cases}}\Leftrightarrow2x=0\Leftrightarrow x=0\)

Vậy tập nghiệm của phương trình là: \(S=\left\{0\right\}\)

b) \(2x\left(3x-5\right)-\left(5-3x\right)=0\)

\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-1\\3x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{5}{3}\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{\frac{-1}{2};\frac{5}{3}\right\}\)

c) \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-6=0\\2x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-2;3\right\}\)

d) \(\left(2x-1\right)^2-\left(2x+5\right)\left(2x-5\right)=18\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(4x^2-25\right)=18\)

\(\Leftrightarrow\left(2x-1\right)^2-4x^2+25=18\)

\(\Leftrightarrow\left(2x-1-2x\right)\left(2x-1+2x\right)=-7\)

\(\Leftrightarrow-1.\left(4x-1\right)=-7\)

\(\Leftrightarrow4x-1=7\)\(\Leftrightarrow4x=8\)\(\Leftrightarrow x=2\)

Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)

8 tháng 12 2019

\(2x\left(x^2-25\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\left(2x+1\right)\left(3x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)

8 tháng 12 2019

\(9\left(3x-2\right)-x\left(2-3x\right)=0\)

\(9\left(3x-2\right)+x\left(3x-2\right)=0\)

\(\left(9+x\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)

\(\left(2x-1\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

9 tháng 1 2018

         \(\left(3x+2\right)\left(x-5\right)=\left(2x-5\right)\left(3x+2\right)\)

\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-5\right)-\left(2x-5\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-5-2x+5\right)=0\)

\(\Leftrightarrow\)\(-x\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)

Vậy...

        \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(2x-1+2-x\right)=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)

Vậy...

9 tháng 1 2018

(3x+2)(x-5) = (2x-5)(3x+2)\(\Rightarrow\)x-5 = 2x-5 \(\Rightarrow\)3x = 0 \(\Rightarrow\)x = 0

(2x-1)2 + (2-x)(2x-1) = 0 \(\Rightarrow\)( 2x - 1 )( 2x - 1 + 2 - x ) \(\Rightarrow\)( 2x - 1 )( x + 1 ) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=1\\x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}}\)

a) Ta có: (2x-3)(x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};-2\right\}\)

b) Ta có: (3x-1)(2x-5)=(3x-1)(x+2)

\(\left(3x-1\right)\left(2x-5\right)-\left(3x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left[\left(2x-5\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(3x-1\right)\left(2x-5-x-2\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=7\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{3};7\right\}\)

c) Ta có: \(\left(x^2-25\right)+\left(x-5\right)\left(2x-11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\left(x-5\right)\left(2x-11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5+2x-11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x-6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\cdot3\cdot\left(x-2\right)=0\)

mà 3≠0

nên \(\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Vậy: x∈{5;2}

d) Ta có: \(\left(x^2-6x+9\right)-4=0\)

\(\Leftrightarrow\left(x-3\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

Vậy: x∈{5;1}

e) Ta có: \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;1;\frac{3}{2}\right\}\)

21 tháng 2 2020
https://i.imgur.com/prSNNlI.jpg
21 tháng 2 2020

Mình giải kĩ lại câu cuối nha.

\(\left(3x+5\right).\left(x^2+x+1\right)=0\)

+ Vì \(x^2+x+1>0\) \(\forall x.\)

\(\Rightarrow x^2+x+1\ne0.\)

\(\Leftrightarrow3x+5=0\)

\(\Leftrightarrow3x=0-5\)

\(\Leftrightarrow3x=-5\)

\(\Leftrightarrow x=\left(-5\right):3\)

\(\Leftrightarrow x=-\frac{5}{3}\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-\frac{5}{3}\right\}.\)

Chúc bạn học tốt!

20 tháng 1 2019

a) \(x^3-3x^2+4=0\)

\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)

\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)

\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow2x=0+3\)

\(\Leftrightarrow2x=3\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

5 tháng 2 2018

a)  \(x^3-3x^2+4=0\)

\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy....

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }