K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

\(ĐKXĐ:x\ge-\frac{2}{3}\)

Ta có : \(4x^2+6x+1=4\sqrt{6x+4}\)

\(\Leftrightarrow4x^2+6x+1+6x+4+4=6x+4+4\sqrt{6x+4}+4\)

\(\Leftrightarrow4x^2+12x+9=\left(\sqrt{6x+4}\right)^2+2.\sqrt{6x+4}.2+2^2\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(\sqrt{6x+4}+2\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x+3=\sqrt{6x+4}+2\left(1\right)\\2x+3=-\sqrt{6x+4}-2\left(2\right)\end{cases}}\)

+) Pt (1) \(\Leftrightarrow\sqrt{6x+4}=2x+1\)

\(\Leftrightarrow\hept{\begin{cases}5x+4=4x^2+4x+1\\x\ge-\frac{1}{2}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(4x+3\right)=0\\x\ge-\frac{1}{2}\end{cases}}\) \(\Leftrightarrow x=1\) ( Thỏa mãn )

+) Pt (2) \(\Leftrightarrow\sqrt{6x+4}=-2x-5\)

\(\Leftrightarrow\hept{\begin{cases}6x+4=\left(-2x-5\right)^2\\x\le-\frac{5}{2}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}6x+4=4x^2+25+20x\\x\le-\frac{5}{2}\end{cases}}\) ( Vô nghiệm )

Vậy phương trình đã cho có nghiệm duy nhất \(x=1\)

7 tháng 8 2017

am-gm cái VT(đánh giá từ TBN sang TBC) 

2 tháng 9 2020

\(ĐKXĐ:x\ge\frac{1}{2}\)

Áp dụng BĐT AM - GM cho các số dương ta có :

\(\sqrt{2x-1}=\sqrt{1.\left(2x-1\right)}\le\frac{1+2x-1}{2}=x\)

\(\sqrt[4]{4x-3}=\sqrt[4]{1.1.1.\left(4x-3\right)}\le\frac{1+1+1+4x-3}{4}=x\)

\(\sqrt[6]{6x-5}=\sqrt[6]{1.1.1.1.1.\left(6x-5\right)}\le\frac{1+1+1+1+1+6x-5}{6}=x\)

\(\Rightarrow\sqrt{2x-1}+\sqrt[4]{4x-3}+\sqrt[6]{6x-5}\le3x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )

Vậy pt có nghiệm duy nhất \(x=1\)

18 tháng 9 2015

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

7 tháng 8 2017

cái nằm dưới căn pt đc (7x-4)(x^2-x+3) , (7x-4)+(x^2-x+3)=x^2+6x-1 ,đặt ẩn phụ mà triển

7 tháng 5 2020

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

  • \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
  • \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
27 tháng 10 2017

Mình Ko biết

19 tháng 7 2019

À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.

19 tháng 7 2019

b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)

ĐK \(x\ge0\)

Pt 

<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)

<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)

 <=> \(4x\sqrt{x+1}=5x+9\)

<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)

<=> \(16x^3-9x^2-90x-81=0\)

<=> \(x=3\)(tm ĐK)

Vậy x=3