Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{4x+20}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{9x-45}\)=4 ; ĐKXĐ : x ≥_+ 5
⇔ \(\sqrt{2^2x+2^2.5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{3^2x-3^2.5}\) =4
⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)3\(\sqrt{x-5}\) =4 ⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\sqrt{x-5}\) =4⇔2\(\sqrt{x+5}\)=4(tm)
⇔\(\sqrt{x+5}\)=2⇔x+5=4 ⇔x=-1
Vậy x=-1
b) \(\sqrt{x^2-36}\) - \(\sqrt{x-6}\) =0 ; ĐKXĐ: x≥_+6
⇔ \(\sqrt{\left(x-6\right)\left(x+6\right)}\) - \(\sqrt{x-6}\) =0 ⇔ \(\sqrt{x-6}\).\(\sqrt{x+6}\) - \(\sqrt{x-6}\) =0
⇔ \(\sqrt{x-6}\)(\(\sqrt{x+6}\) -1 )=0 ⇔\([\) \(\begin{matrix}\sqrt{x-6}&=0\\\sqrt{x+6}-1&=0\end{matrix}\) ⇔ \([\) \(\begin{matrix}x-6&=0\\x+6-1&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=6\left(ktm\right)\\x&=-5\left(tm\right)\end{matrix}\)
Vậy x=-5
c) \(\sqrt{4-x^2}\) -x +2 =0 ; ĐKXĐ: -2≤x≤2
⇔ \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -x+2 =0 ⇔ \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -(x-2)=0
⇔ \(\sqrt{\left(2-x\right)\left(2+x\right)}\) =(x-2) ⇔ (2-x)(2+x)=(x-2)2 ⇔ 4-x2 = x2-4x+4 ⇔ -x2-x2+4x=4-4
⇔-2x2+4x=0 ⇔ -2x(x-2)=0 ⇔ \([\) \(\begin{matrix}-2x&=0\\x-2&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=0\left(tm\right)\\x&=2\left(tm\right)\end{matrix}\)
Vậy S=\(\left\{0;2\right\}\)
d) \(\sqrt{\left(2x-3\right)\left(x-1\right)}-\sqrt{x-1}=0\) ; ĐKXĐ: x≥\(\dfrac{3}{2}\);x ≥ 1
⇔\(\sqrt{2x-3}.\sqrt{x-1}-\sqrt{x-1}=0\) ⇔ \(\sqrt{x-1}.\left(\sqrt{2x-3}-1\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{2x-3}-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x-1=0\\2x-3-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Vậy s=\(\left\{1:2\right\}\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
a)
DK: x\(\ge\)-2,x\(\ge\)\(\dfrac{1}{2}\)
=>\(\sqrt{4\left(x+2\right)}-\sqrt{2x-1}+\sqrt{9\left(x+2\right)}=0\)
\(\Leftrightarrow2\sqrt{x+2}-\sqrt{2x-1}+3\sqrt{x+2}=0\)
\(\Leftrightarrow5\sqrt{x+2}-\sqrt{2x-1}=0\)
\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)
<=>25x+50=2x-1
=>23x=-51
=>x=\(-\dfrac{51}{23}\)(ko thỏa mãn dk)
=> phương trình vô nghiệm..
b)
ĐKXĐ:\(x\ge1,x\ge-1\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-1\right)}-3\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)(nhận)
Vậy S={1;8}
c) ĐKXĐ:
\(x\ge0\)
\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)
\(\Leftrightarrow-11\sqrt{2x}=-11\)
\(\Leftrightarrow\sqrt{2x}=1\)
\(\Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)
Câu a :\(\sqrt{4x+8}-2\sqrt{2x-1}+\sqrt{9x+18}=0\) ( ĐK : \(x\ge\dfrac{1}{2}\) )
\(\Leftrightarrow\sqrt{4x+8}+\sqrt{9x+18}=\sqrt{2x-1}\)
\(\Leftrightarrow2\sqrt{x+2}+3\sqrt{x+2}=\sqrt{2x-1}\)
\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)
\(\Leftrightarrow25\left(x+2\right)=2x-1\)
\(\Leftrightarrow25x+50=2x-1\)
\(\Leftrightarrow23x=-51\)
\(\Leftrightarrow x=-\dfrac{51}{23}< -\dfrac{1}{2}\)
Vậy phương trình vô nghiệm .
Câu b :
\(\sqrt{x^2-1}-\sqrt{9\left(x-1\right)}=0\) ( ĐK : \(x\ge1\) )
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-3\sqrt{\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)}\left(\sqrt{x+1}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy \(S=\left\{1;8\right\}\)
Câu c : \(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\) ( ĐK : \(x\ge\dfrac{5}{6}\) )
\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)
\(\Leftrightarrow-11\sqrt{2x}+11=0\)
\(\Leftrightarrow-11\left(\sqrt{2x}-1\right)=0\)
\(\Leftrightarrow\sqrt{2x}-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
Chúc bạn học tốt
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
a) \(\sqrt{5x}=\sqrt{35}\)
ĐK : x ≥ 0
Bình phương hai vế
pt ⇔ 5x = 35 ⇔ x = 7 ( tm )
b) \(\sqrt{36\left(x-5\right)}=18\)
ĐK : x ≥ 5
Bình phương hai vế
pt ⇔ 36( x - 5 ) = 324
⇔ x - 5 = 9
⇔ x = 14 ( tm )
c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)
⇔ \(\sqrt{\left(4-8x\right)^2}=20\)
⇔ \(\left|4-8x\right|=20\)
⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
d) \(\sqrt{3-2x}\le\sqrt{5}\)
ĐK : x ≤ 3/2
Bình phương hai vế
bpt ⇔ 3 - 2x ≤ 5
⇔ -2x ≤ 2
⇔ x ≥ -1
Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2
\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\left(tm\right)\)
vậy...
b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)
\(\Leftrightarrow6\sqrt{x-5}=18\)
\(\Leftrightarrow\sqrt{x-5}=3\)
\(\Leftrightarrow x-5=9\)
\(\Leftrightarrow x=14\left(tm\right)\)
vậy...
c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
vậy....
\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)
\(\Leftrightarrow3-2x< 25\)
\(\Leftrightarrow-2x< 22\)
\(\Leftrightarrow x>-11\)
\(\Rightarrow-11< x< 1.5\)
vạy.