Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-13x^2+36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\\x=-3\end{matrix}\right.\)
b) \(5x^4+3x^2-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(5x^2+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)( do \(5x^2+8\ge8>0\))
c: Ta có: \(2x^4+3x^2+2=0\)
Đặt \(a=x^2\)
Phương trình tương đương là: \(2a^2+3a+2=0\)
\(\text{Δ}=3^2-4\cdot2\cdot2=9-16=-7\)
Vì Δ<0 nên phương trình vô nghiệm
Vậy: Phương trình \(2x^4+3x^2+2=0\) vô nghiệm
a) x4 – 5x2+ 4 = 0.
Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4
Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.
b) 2x4 – 3x2 – 2 = 0.
Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)
Vậy: x1 = √2; x2 = -√2
c) 3x4 + 10x2 + 3 = 0.
Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)
Phương trình vô nghiệm.
a) x4 – 5x2+ 4 = 0.
Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4
Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.
b) 2x4 – 3x2 – 2 = 0.
Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)
Vậy: x1 = √2; x2 = -√2
c) 3x4 + 10x2 + 3 = 0.
Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)
Phương trình vô nghiệm.
nhớ like
\(\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+9\right)=0\) (dk:x>=0)
\(\left(x-3\right)^2+\left(\sqrt{x}-3\right)^2=0\)
=>\(\hept{\begin{cases}x-3=0\\\sqrt{x}-3=0\end{cases}}\)
=>x=3 tmdk
1. phương trình tương đương với \(\left(x^2-7x+2\right)\left(x^2+2x+2\right)=0\to x=\frac{7}{2}\pm\frac{\sqrt{41}}{2}\)
2. phương trình tương đương với \(\left(x^2+\left(\sqrt{2}-1\right)x+1\right)\left(x^2+\left(\sqrt{2}+1\right)x-1\right)=0\to x=\frac{-1\pm\sqrt{2}\pm\sqrt{7-2\sqrt{2}}}{2}\) với dấu +,- lấy tuỳ ý
<=> x4+3x3=14x2+6x-4
\(\Leftrightarrow x^4+3x^3-\frac{7}{4}x^2-6x+4=\frac{49}{4}x^2\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2=\frac{49}{4}x^2\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2-\frac{49}{4}x^2=0\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2+\frac{7}{2}x\right)\left(x^2+\frac{3}{2}x-2-\frac{7}{2}x\right)=0\)
\(\Leftrightarrow\left(x^2+5x-2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x-2=0\\x^2-2x-2=0\end{cases}}\)
Đến đây bn tự làm tiếp nha
tk mk vs
bạn | giải giúp mình |
mình | đếu bít làm |
bạn | giải hộ đi mà |
mình | NÂU NÂU NẦU NẦU NÂU....Á À Á |
\(PT\Leftrightarrow5x^4-2x^2-4-3x^2\sqrt{x^2+2}=0\)
\(\Leftrightarrow5x^4-2\left(x^2+2\right)-3x^2\sqrt{x^2+2}=0\)
Đặt \(x^2=a;\sqrt{x^2+2}=b\) ta có :
\(PT\Leftrightarrow5a^2-2b^2-3ab=0\Leftrightarrow\left(a-b\right)\left(5a+2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\5a+2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\sqrt{x^2+2}\\5x^2+2\sqrt{x^2+2}=0\left(l\right)\end{cases}}}\)
Do đó \(x^4-x^2-2=0\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\Rightarrow x=\pm\sqrt{2}\)
Đặt: \(x^2=t\)
Sao đó giải như pt bậc 2 bình thường
cops mạng đâu thế :((