Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chả biết đúng hay sai :v làm thử
\(a)\) Với \(\hept{\begin{cases}x+1\ge0\\x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có :
\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)
\(\Leftrightarrow\)\(\left(x+1+x-1\right)^2-2\left(x+1\right)\left(x-1\right)+x^2=2\)
\(\Leftrightarrow\)\(4x^2-2x^2+2+x^2=2\)
\(\Leftrightarrow\)\(3x^2=0\)
\(\Leftrightarrow\)\(x^2=0\)
\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn )
Với \(\hept{\begin{cases}x+1< 0\\x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x< 0\\x< 1\end{cases}\Leftrightarrow}x< -1}\) ta có :
\(\left[-\left(x+1\right)\right]^2+\left(-x\right)^2+\left[-\left(x-1\right)\right]^2=2\)
\(\Leftrightarrow\)\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)
Đến đây giải giống như trên nha bạn
\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn )
Vậy không có giá trị x thỏa mãn đề bài
Chúc bạn học tốt ~
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
1/ \(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=3x^4+3x^2+3\)
\(\Leftrightarrow x^4-3x^4+2x^3+x^2+2x^2-3x^2+2x+1-3=0\)
\(\Leftrightarrow-2x^4+2x^3+2x-2=0\)
\(\Leftrightarrow-2\left(x^4-x^3-x+1\right)=0\)
\(\Leftrightarrow-2\left(x^3\left(x-1\right)-\left(x-1\right)\right)=0\)
\(\Leftrightarrow-2\left(x^3-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow-2\left(x-1\right)^2\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
2/ Theo tớ chỗ này cậu viết sau đề rồi :D Sửa nhé :
\(x^5=x^4+x^3+x^2+x+2\)
\(\Leftrightarrow x^5-x^4-x^3-x^2-x-2=0\)
\(\Leftrightarrow x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^4\left(x-2\right)+x^3\left(x-2\right)+x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^4+x^3+x^2+x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x^4+x^3+x^2+x+1=0\end{cases}}}\)
Với \(x^4+x^3+x^2+x+1=0\) (1)
Nhân cả 2 vế với \(x-1\)ta được :
\(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow x^5+x^4+x^3+x^2+x+1-\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow x^5-1=0\)
\(\Leftrightarrow x=1\)
Thay \(x=1\)vào (1)
\(\Leftrightarrow\)Vô lí
\(\Leftrightarrow\)\(x^4+x^3+x^2+x+1\ne0\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
Bài b) (x-4)(x-7)(x-6)(x-5)=1680
=> (x2-11x+28)(x2-11x+30)=1680
Đặt t=x2-11x+28
=> t(t+2)=1680
=>t2+2t-1680=0
=> t2+2t+1-1681=0
=> (t+1)2-412=0
=> (t-40)(t+42)=0
=> t=40 hoặc t=-42
Bạn thế vào như câu a) để giải nhé !!!
b. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath
(x2 + x + 1)2 = 5( x4 + x2 + 1)
<=> (x2 + x + 1)2 = 5 [(x4 + 2x2 + 1) - x2]
<=> (x2 + x + 1)2 = 5 [(x2 + 1)2 - x2]
<=> (x2 + x + 1)2 = 5 (x2 - x + 1)(x2 + x + 1)
<=> (x2 + x + 1)2 = (5x2 - 5x + 5)(x2 + x + 1)
<=> (x2 + x + 1)2 - (5x2 - 5x + 5)(x2 + x + 1) = 0
<=> (x2 + x + 1)(x2 + x + 1 - 5x2 + 5x - 5) = 0
<=> (x2 + x + 1)(-4x2 + 6x - 4) = 0
<=> (x2 + x + 1)(x2 - \(\dfrac{3}{2}\)x + 1) = 0 (chia cả hai vế cho -4)
<=> (\(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\))(x2 - 2. x. \(\dfrac{3}{4}\)+ \(\dfrac{9}{16}\)+\(\dfrac{7}{16}\)) = 0
<=> [\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)][\(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}\)] = 0
Vì \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0,\forall x\); \(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}>0,\forall x\)
=> [\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)][\(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}\)] > 0, \(\forall x\)
Vậy phuong trình vô nghiệm.