Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+10x3+26x2+10x+1=0x4+10x3+26x2+10x+1=0
⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0
⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0
⇔(x2+4x+1)(x2+6x+1)=0⇔(x2+4x+1)(x2+6x+1)=0
⇔(x2+4x+4−3)(x3+6x+9−8)=0⇔(x2+4x+4−3)(x3+6x+9−8)=0
⇔[(x+2)2−3][(x+3)2−8]=0⇔[(x+2)2−3][(x+3)2−8]=0
⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2=3(x+3)2=8⇒[(x+2)2=3(x+3)2=8⇒⎡⎣⎢⎢⎢x=−4±12−−√2x=−6±32−−√2
\(2x^4-10x^2+17=2\left(x^4-5x^2+\frac{25}{4}\right)+\frac{9}{2}=2\left(x^2-\frac{5}{2}\right)^2+\frac{9}{2}>0\left(vl\right)\)
=> PT vô nghiệm
\(x^4-x^3+2x^2-x+1=x^2\left(x^2-x+1\right)+x^2-x+1=\left(x^2-x+1\right)\left(x^2+1\right)=\left(x^2+1\right)\left(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\forall x\)=> Pt vô nghiệm
mình sẽ giải câu 3 cho bạn nhé
đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)
\(\left(x+13\right)\left(x-2\right)=0\)
\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
nhớ thank mk nhé
câu 5 nà
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)
<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)
=> điều phải chứng minh
a) x2 + 10x + 25 - 4x2 - 20x = 0
<=> 3x2 + 10x - 25 = 0
<=> (x + 5)(3x - 5) = 0 <=> \(\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Vậy S = \(\left\{-5;\frac{5}{3}\right\}\)
b. (4x - 5)2 - 2(4x - 5)(4x + 5) = 0
<=> (4x - 5)[(4x - 5) - 2(4x + 5)] = 0
<=> (4x - 5)(4x - 5 - 8x - 10) = 0
<=> (4x - 5)(-4x - 15) = 0 <=> \(\orbr{\begin{cases}x=\frac{5}{4}\\x=-\frac{15}{4}\end{cases}}\)
Vậy S = \(\left\{-\frac{15}{4};\frac{5}{4}\right\}\)
\(x^4-10x^3+26x^2-10x+1=0\)
\(\Leftrightarrow\)\(\left(x^4-4x^3+x^2\right)-\left(6x^3-24x+6x\right)+\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(x^2\left(x^2-4x+1\right)-6x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-6x+1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2-6x+1=0\\x^2-4x+1=0\end{cases}}\)
Nếu \(x^2-6x+1=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3-\sqrt{8}\\x=\sqrt{8}+3\end{cases}}\)
Nếu \(x^2-4x+1=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2-\sqrt{3}\\x=\sqrt{3}+2\end{cases}}\)
Vậy....
a) đặt y=x^2+x+1 khi đó phương trình trở thành y^2-y-12=0
y^2-y-12=0
y^2+3y-4y-12=0
y(y+3)-4(y+3)=0
từ đó tìm đc y=-3;y=4 rồi thay vào tìm x
b)(x^2+5x)-2(x^2+5x)=0
đặt y=x^2+5x rồi làm như câu a
c)đặt a=x^2+3x-4
b=2x^2-5x+3
thì 3x^2-2x-1=a+b khi đó phương trình trở thành:a^3+b^3=(a+b)^3 rồi dùng hằng đẳng thức để phá ngoặc.....
d) đặt y=x-7 rồi dùng hằng đẳng phá ngoặc và tìm y, rồi tìm x
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
6)x4 - x3- 10x2+2x+4=0
<=>x4 - x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)
=>(x2-3x-2)(x2+2x-2)=0
Th1:x2-3x-2=0
denta(-3)2-(-4(1.2))=17
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)
Th2:x2+2x-2=0
denta:22-(-4(1.2))=12
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)
=>x=-căn bậc hai(3)-1,
x=3/2-căn bậc hai(17)/2,
x=căn bậc hai(3)-1,
x=căn bậc hai(17)/2+3/2
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927