Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x+5}+3-1-\sqrt{3-x}=\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x+5}-3}-\frac{2-x}{1-\sqrt{3-x}}-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x+5}-3}+\frac{1}{1-\sqrt{3-x}}-x+3\right)=0\)
Giải nốt vs ạ
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
\(\sqrt{5x-3}=3-x\)
\(\Leftrightarrow\sqrt{5x-3}^2=\left(3-x\right)^2\)
\(\Leftrightarrow\left|5x-3\right|=9+x^2-6x\)
\(\orbr{\begin{cases}5x-3=9+x^2-6x\\-5x-3=9+x^2-6x\end{cases}}\)
Tự giải từng PT
5x\(\sqrt{x-a}\)=2a-2a\(^2\)-2x
<=> \(\sqrt{x-a}\)=\(\frac{2a-2a^2-2x}{5x}\)
+ Với \(\frac{2a-2a^2-2x}{5x}\)=0 <=> 2a - 2a\(^2\)-2x = 0 <=> a\(^2\)-a+x=0 <=> a + \(\frac{1}{2}\)=\(\sqrt{\frac{1}{4}-x}\)
<=> a = \(\sqrt{\frac{1}{4}-x}\)- \(-\frac{1}{2}\)=....... tự giải
xét trường hợp \(\frac{2a-2a^2-2x}{5x}\)\(\ne\)0 rồi tự giải tiếp
Đk \(x+3\ge0\Leftrightarrow x\ge-3\)
Đặt \(\sqrt{\frac{x+3}{2}}=t+1\left(t\ge-1\right)\Leftrightarrow x+3=2\left(t+1\right)^2\Leftrightarrow2t^2+4t=x+1\)
Ta có hệ phương trình:
\(\hept{\begin{cases}2x^2+4x=t+1\\2t^2+4t=x+1\end{cases}}\)
Hệ phương trình đối xứng loại 2 :). Em làm tiếp nhé:)
Gợi ý
ĐKXĐ: ....
Do x=0 không phải là nghiệm nên chia cả hai vế cho x^2 có
\(\sqrt{2+\frac{5}{x}+\frac{3}{x^2}}=4-\frac{5}{x}-\frac{3}{x^2}\)(1) Đặt \(\sqrt{\frac{5}{x}+\frac{3}{x^2}+2}=y\Rightarrow y\ge0\)và \(\frac{5}{x}+\frac{3}{x^2}=y^2-2\)
Khi đó \(\left(1\right)\Leftrightarrow y=4-y^2+2\)Sau khi tìm được y thì thế vào tìm x , rồi đối chiếu ĐKXĐ và trả lời
KL : ...