Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. phương trình tương đương với \(\left(x^2-7x+2\right)\left(x^2+2x+2\right)=0\to x=\frac{7}{2}\pm\frac{\sqrt{41}}{2}\)
2. phương trình tương đương với \(\left(x^2+\left(\sqrt{2}-1\right)x+1\right)\left(x^2+\left(\sqrt{2}+1\right)x-1\right)=0\to x=\frac{-1\pm\sqrt{2}\pm\sqrt{7-2\sqrt{2}}}{2}\) với dấu +,- lấy tuỳ ý
\(x^4+4x^3-x^2+10x+3=\left(x^2+ax-1\right)\left(x^2+bx-3\right).\)
\(\hept{\begin{cases}a+b=4\\ab-4=-1\\3a+b=-10\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=1\\sai.\end{cases}chiu}\)
Thấy x khác 0 , x bằng 0 không phải là nghiệm của phương trình.
\(\sqrt[3]{x^4-x^2}=-x^2+10x+1\Leftrightarrow\sqrt[3]{x^3\left(x-\frac{1}{x}\right)}=-x\left(x-\frac{1}{x}-10\right)...\)
\(\Leftrightarrow x.\sqrt[3]{x-\frac{1}{x}}=-x\left(x-\frac{1}{x}-10\right)\Leftrightarrow\sqrt[3]{x-\frac{1}{x}}=-\left(x-\frac{1}{x}-10\right).\) (Vì x khác 0), x bằng không không phải là nghiệm cuae phương trình. Đặt ẩn phụ, được phương trình t3 + t - 10 = 0 với t là "căn bậc ba của x trừ một trên x"
\(t^3+t-10=0\Leftrightarrow\left(t-2\right)\left(t^2+2t+5\right)=0.\) \(\Leftrightarrow\left(t-2\right)[\left(t+1\right)^2+4]=0\Leftrightarrow t=2.\)
Vậy \(\sqrt[3]{x-\frac{1}{x}}=2\Leftrightarrow x-\frac{1}{x}=8\Leftrightarrow x^2-8x-1=0.\) Phương trình có hai nghiệm : \(x_1=4-\sqrt{17}.,x_2=4+\sqrt{17}.\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:
a/ \(x^2+\frac{1}{x^2}+6\left(x+\frac{1}{x}\right)+11=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(\Leftrightarrow t^2-2+6t+11=0\Leftrightarrow\left(t+3\right)^2=0\)
\(\Rightarrow t=-3\Rightarrow x+\frac{1}{x}=-3\Leftrightarrow x^2+3x+1=0\) (casio)
b/ \(x^2+\frac{1}{x^2}-10\left(x+\frac{1}{x}\right)+26=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(\Leftrightarrow t^2-2-10t+26=0\)
\(\Leftrightarrow t^2-10t+24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{x}=4\\x+\frac{1}{x}=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x=1=0\\x^2-6x+1=0\end{matrix}\right.\) (casio)
a/ Nhận thấy \(x=0\) không phải nghiệm, chia cả 2 vế của pt cho \(x^2\):
\(x^2+5x-10+\frac{10}{x}+\frac{4}{x^2}=0\)
\(\Leftrightarrow x^2+\frac{4}{x^2}+5\left(x+\frac{2}{x}\right)-10=0\)
Đặt \(x+\frac{2}{x}=a\Rightarrow x^2+4+\frac{4}{x^2}=a^2\Rightarrow x^2+\frac{4}{x^2}=a^2-4\)
Phương trình trở thành:
\(a^2-4+5a-10=0\)
\(\Leftrightarrow a^2+5a-14=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{2}{x}=2\\x+\frac{2}{x}=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+2=0\left(vn\right)\\x^2+7x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-7+\sqrt{41}}{2}\\x=\frac{-7-\sqrt{41}}{2}\end{matrix}\right.\)
b/ \(x^4-8x^2+x+12=0\)
\(\Leftrightarrow x^4-8x^2+16+x-4=0\)
\(\Leftrightarrow\left(x^2-4\right)^2+x-4=0\)
Đặt \(x^2-4=a\Rightarrow-4=a-x^2\)
Phương trình trở thành:
\(a^2+x+a-x^2=0\)
\(\Leftrightarrow\left(a-x\right)\left(a+x\right)+x+a=0\)
\(\Leftrightarrow\left(a-x+1\right)\left(x+a\right)=0\)
\(\Leftrightarrow\left(x^2-4-x+1\right)\left(x+x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\x^2+x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1\pm\sqrt{13}}{2}\\x=\frac{-1\pm\sqrt{17}}{2}\end{matrix}\right.\)
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...
\(x^4+x^3-10x^2+x+1=0\Leftrightarrow x^2+x-10+\frac{1}{x}+\frac{1}{x^2}=0\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{1}{x}\right)-12=0\)(1)
Đặt \(t=x+\frac{1}{x}\), khi đó:
(1) \(t^2+t-12=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{x}=3\\x+\frac{1}{x}=-4\end{cases}}}\)
\(\Leftrightarrow\)\(x=\frac{3+\sqrt{5}}{2}\)hoặc \(x=\frac{3-\sqrt{5}}{2}\)hoặc \(x=-2+\sqrt{3}\)hoặc \(x=-2-\sqrt{3}\).