K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

\(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)

Ta có: \(x^2+2x+17=(x^2+2x+1)+16=\left(x+1\right)^2+16\ge16\)

\(\Rightarrow\sqrt{x^2+2x+17}\ge\sqrt{16}=4\)

\(\Rightarrow x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\ge x^4+4x^3+6x^2+4x+4\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1\le0\)

\(\Leftrightarrow\left(x+1\right)^4\le0\)

Mà \(\left(x+1\right)^4\ge0\Rightarrow(x+1)^4=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Thử lại ta thấy x=-1 thỏa mãn bài toán

Vậy, pt có nghiệm duy nhất là x=-1

5 tháng 6 2017

b)\(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)

Tự giải điều kiện nhé

\(pt\Leftrightarrow x^4+4x^3+6x^2+4x+1+\sqrt{x^2+2x+17}-4=0\)

\(\Leftrightarrow\left(x+1\right)^4+\frac{x^2+2x+17-16}{\sqrt{x^2+2x+17}+4}=0\)

\(\Leftrightarrow\left(x+1\right)^4+\frac{x^2+2x+1}{\sqrt{x^2+2x+17}+4}=0\)

\(\Leftrightarrow\left(x+1\right)^4+\frac{\left(x+1\right)^2}{\sqrt{x^2+2x+17}+4}=0\)

\(\Leftrightarrow\left(x+1\right)^2\left[\left(x+1\right)^2+\frac{1}{\sqrt{x^2+2x+17}+4}\right]=0\)

Dễ thấy: \(\left(x+1\right)^2+\frac{1}{\sqrt{x^2+2x+17}+4}>0\) (vô nghiệm)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Rightarrow x=-1\) (thỏa)

Vậy x=-1 là nghiệm của pt

5 tháng 6 2017

a)Đk:\(x\ge-1\)

\(pt\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{cases}}\) thì ta có: 

\(a^2+b^2=\left(x^2-x+1\right)+\left(x+1\right)=x^2+2\)

Ta được pt tương  đương \(5ab=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

*)Xét \(2a=b\Rightarrow2\sqrt{x+1}=\sqrt{x^2-x+1}\)

\(\Leftrightarrow4\left(x+1\right)=x^2-x+1\)

\(\Leftrightarrow-x^2+5x+3=0\Leftrightarrow x_{1,2}=-\frac{-5\pm\sqrt{37}}{2}\) (thỏa)

*)Xét \(b=2a\)\(\Rightarrow\sqrt{x+1}=2\sqrt{x^2-x+1}\)

\(\Rightarrow x+1=4\left(x^2-x+1\right)\)

\(\Rightarrow-4x^2+5x-3=0\Rightarrow-\frac{1}{16}\left(8x-5\right)^2-\frac{23}{16}< 0\) (loại)

7 tháng 5 2020

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

  • \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
  • \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
27 tháng 3 2017

cách khác đơn giản hơn nhiều 

Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}-3\sqrt{x+4}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{2\left(x-1\right)}-3\right)+\sqrt{x+3}\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

\(\Leftrightarrow\left(\sqrt{x+4}+\sqrt{x+3}\right)\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

Xét Ư(1)={1;-1}={....}

Dễ nhé, tự làm nốt

27 tháng 3 2017

Đk: \(x\ge1\)

\(pt\Leftrightarrow\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2x^2+6x-8}-\frac{10}{3}\sqrt{x+3}+\frac{1}{3}\sqrt{x+3}-1\sqrt{2x^2+4x-6}-3\sqrt{x+4}=0\)

\(\Leftrightarrow\frac{2x^2+6x-8-\frac{100}{9}\left(x+3\right)}{\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}}+\frac{x-6}{3\left(\sqrt{x+3}+3\right)}+\frac{2x^2+4x-6-9\left(x+4\right)}{\sqrt{2x^2+4x-6}+3\sqrt{x+4}}=0\)

Để đỡ rối ta đặt mấy cái mẫu \(\hept{\begin{cases}N=\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}>0\\H=\sqrt{x+3}+3>0\\T=\sqrt{2x^2+4x-6}+3\sqrt{x+4}>0\end{cases}}\)

\(\Leftrightarrow\frac{18x^2-46x-372}{9N}+\frac{x-6}{3H}+\frac{2x^2-5x-42}{T}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}\right)=0\)

Dễ  thấy: \(\forall x\ge1\) thì \(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}>0\)

\(\Rightarrow x-6=0\Rightarrow x=6\) (thỏa mãn)

15 tháng 7 2017

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

15 tháng 7 2017

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

23 tháng 7 2019

a) \(\sqrt{x^2-6x+9}+x=11\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)

\(\Rightarrow x-3+x=11\) 

\(\Rightarrow2x=14\Rightarrow x=7\) 

Vậy........

b) \(\sqrt{3x^2-4x+3}=1-2x\)

\(3x^2-4x+3=1-4x+4x^2\) 

\(3x^2-4x^2-4x+4x=-2\) 

\(-x^2=-2\) 

\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\) 

Vậy.........

23 tháng 7 2019

d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\) 

\(\Rightarrow2x-1=x-3\) 

\(\Rightarrow x=1-3\) 

\(\Rightarrow x=-2\) 

Vậy  x=-2