Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+10x3+26x2+10x+1=0x4+10x3+26x2+10x+1=0
⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0
⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0
⇔(x2+4x+1)(x2+6x+1)=0⇔(x2+4x+1)(x2+6x+1)=0
⇔(x2+4x+4−3)(x3+6x+9−8)=0⇔(x2+4x+4−3)(x3+6x+9−8)=0
⇔[(x+2)2−3][(x+3)2−8]=0⇔[(x+2)2−3][(x+3)2−8]=0
⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2=3(x+3)2=8⇒[(x+2)2=3(x+3)2=8⇒⎡⎣⎢⎢⎢x=−4±12−−√2x=−6±32−−√2
x 4−10x3+26x2−10x+1=0
⇔x2(x2-10x +26 -\(\dfrac{10}{x}+\dfrac{1}{x^2}\))=0
⇔x2-10x+26-\(\dfrac{10}{x}+\dfrac{1}{x^2}=0\)
⇔\(\left(-10x-\dfrac{10}{x}\right)+\left(x^2+\dfrac{1}{x^2}\right)+26=0\)
⇔\(-10\left(x+\dfrac{1}{x}\right)+\left(x^2+\dfrac{1}{x^2}\right)+26=0\)
đặt \(t=\left(x+\dfrac{1}{x}\right)\) thì \(\left(x^2+\dfrac{1}{x^2}\right)=t-2\)
ta có
-10t +t2-2+26=0
=>t2-10t+24=0
=>t2-4t-6t+24=0
=>(t2-4t)-(6t-24)=0
=>t(t-4)-6(t-4)=0
=>(t-4)(t-6)=0
=>t=4 và t=6
* với t=4 thì
\(x+\dfrac{1}{x}=4\Rightarrow x^2-4x+1=0\)(vô nghiệm)
* với t=6 thì
\(x+\dfrac{1}{x}=6\Rightarrow x^2-6x+1=0\) (vô no)
vậy S=∅
x 4−10x3+26x2−10x+1 =0 à
mk là theo
x 4−10x3+26x2−10x+1=0 nha
\(x^4-10x^3+26x^2-10x+1=0\)
\(\Leftrightarrow\)\(\left(x^4-4x^3+x^2\right)-\left(6x^3-24x+6x\right)+\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(x^2\left(x^2-4x+1\right)-6x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-6x+1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2-6x+1=0\\x^2-4x+1=0\end{cases}}\)
Nếu \(x^2-6x+1=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3-\sqrt{8}\\x=\sqrt{8}+3\end{cases}}\)
Nếu \(x^2-4x+1=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2-\sqrt{3}\\x=\sqrt{3}+2\end{cases}}\)
Vậy....
\(x^4+10x^3+26x^2+10x+1=0\)
\(\Leftrightarrow x^4+6x^3+x^2+4x^3+24x^2+4x+x^2+6x+1=0\)
\(\Leftrightarrow x^2\left(x^2+6x+1\right)+4x\left(x^2+6x+1\right)+\left(x^2+6x+1\right)=0\)
\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2+6x+1\right)=0\)
\(\Leftrightarrow\left(x^2+4x+4-3\right)\left(x^3+6x+9-8\right)=0\)
\(\Leftrightarrow\left[\left(x+2\right)^2-3\right]\left[\left(x+3\right)^2-8\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^2-3=0\\\left(x+3\right)^2-8=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^2=3\\\left(x+3\right)^2=8\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-4\pm\sqrt{12}}{2}\\x=\dfrac{-6\pm\sqrt{32}}{2}\end{matrix}\right.\)
a) \(|2x+1|=|x-3|\)
\(\Leftrightarrow|2x+1|-|x-3|=0\)
Lập bảng xét dấu :
x | \(\frac{-1}{2}\) | 3 | |||
2x+1 | - | 0 | + | \(|\) | + |
x-3 | - | \(|\) | - | 0 | + |
Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow-2x-1-3+x=0\)
\(\Leftrightarrow-x=4\)
\(\Leftrightarrow x=-4\left(tm\right)\)
Nếu \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x+1-3+x=0\)
\(\Leftrightarrow3x-2=0\)
\(x=\frac{2}{3}\left(tm\right)\)
Nếu \(x>3\) thì \(|2x+1|=2x+1\)
\(|x-3|=x-3\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)
\(\Leftrightarrow2x+1-x+3=0\)
\(\Leftrightarrow x=-4\) ( loại )
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)
Mà \(\left(x^2+1\right)^2\ge0\forall x\)
\(\left(x-3\right)^2\ge0\forall x\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)
Lại có \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2=-1\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)
\(x^4+2x^3+7x^2+26x+37=\left(x^4+2x^3+2x^2+2x+x^2+1\right)+\left(4x^2+24x+36\right)\)
\(=\left(x^2+x+1\right)^2+4\left(x+3\right)^2\)
Đặt: \(x^2+x+1=A;x+3=B\)
\(A\left(A^2+4.B^2\right)=5B^3\Leftrightarrow\left(A^3+5A.B^2\right)-\left(A.B^2+5B^3\right)=0\)
\(\Leftrightarrow\left(A-B^2\right)\left(A^2+5B^2\right)=0\). Em làm tiếp nhé!
Vẫn chưa hiểu phân tích của cô Chi)):
Ta có: \(x^4+2x^3+7x^2+26x+37=\left(x^4+2x^3+2x^2+x^2+2x+1\right)\)
\(+\left(4x^2+24x+36\right)=\left(x^2+x+1\right)^2+4\left(x+3\right)^2\)
Đặt \(x^2+x+1=u;x+3=v\)
Phương trình trở thành \(u\left(u^2+4v^2\right)=5v^3\)
\(\Leftrightarrow u^3+4uv^2=5v^3\)
\(\Leftrightarrow\left(u^3-v^3\right)+\left(4uv^2-4v^3\right)=0\)
\(\Leftrightarrow\left(u-v\right)\left(u^2+uv+v^2\right)+4v^2\left(u-v\right)=0\)
\(\Leftrightarrow\left(u-v\right)\left(u^2+uv+5v^2\right)=0\)
+) \(u-v=0\Rightarrow u=v\)
\(\Rightarrow x^2+x+1=x+3\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
+) \(u^2+uv+5v^2=0\)(vô nghiệm)
Vậy \(x=\pm\sqrt{2}\)
a) x^4 - 5x^2 + 4 = 0
<=> (x^2 - 1)(x^2 - 4) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0
<=> x = +-1 hoặc x = +-2
b) x^4 - 10x^2 + 9 = 0
<=> (x^2 - 1)(x^2 - 9) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0
<=> x = +-1 hoặc x = +-3
c) x^3 + 6x^2 + 11x + 6 = 0
<=> (x^2 + 5x + 6)(x + 1) = 0
<=> (x + 2)(x + 3)(x + 1) = 0
<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
<=> x = -2 hoặc x = -3 hoặc x = -1
d) x^3 + 9x^2 + 26x + 24 = 0
<=> (x^2 + 7x + 12)(x + 2) = 0
<=> (x + 3)(x + 4)(x + 2) = 0
<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0
<=> x = -3 hoặc x = -4 hoặc x = -2
\(x^4+10x^3+25x^2+x^2+1=0\)
\(\Leftrightarrow\left(x^2+5x\right)^2+x^2+1=0\)
Do \(\left(x^2+5x\right)^2+x^2+1>0\) \(\forall x\)
\(\Rightarrow\) Phương trình vô nghiệm