Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ĐKXD \(x\ge1\)
.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)
=> \(2b^2+3a^2=2x^2+5x-1\)
=> \(2b^2+3a^2-7ab=0\)
<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)
+ \(a=2b\)
=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)
=> \(4x^2+3x+5=0\)vô nghiệm
+ \(a=\frac{1}{3}b\)
=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)
=> \(x^2-8x+10=0\)
<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)
Vậy \(x=4+\sqrt{6}\)
ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
\(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)
Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)
nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)
Vậy x=-2
Em kiểm tra lại đề bài câu trên nhé
\(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
ĐK:\(x\ge3\)
\(pt\Leftrightarrow\sqrt{x^2-5x+6}-\sqrt{2}+\sqrt{x+1}-\sqrt{5}=\sqrt{x-2}-\sqrt{2}+\sqrt{x^2-2x-3}-\sqrt{5}\)
\(\Leftrightarrow\frac{x^2-5x+6-2}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x+1-5}{\sqrt{x+1}+\sqrt{5}}=\frac{x-2-2}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-3-5}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\Leftrightarrow\frac{x^2-5x+4}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}=\frac{x-4}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-8}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-4\right)}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}-\frac{x-4}{\sqrt{x-2}+\sqrt{2}}-\frac{\left(x-4\right)\left(x+2\right)}{\left(x+2\right)\sqrt{x^2-2x-3}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{x-1}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{1}{\sqrt{x-2}+\sqrt{2}}-\frac{x+2}{\left(x+2\right)\sqrt{x^2-2x-3}+\sqrt{5}}\right)=0\)
Suy ra x-4=0 =>x=4
ĐK: x > = 3
pt <=> \(x^2-5x+4+\left(\sqrt{2x+1}-3\right)+\left(\sqrt{x-3}-1\right)=0\)
<=> \(\left(x-1\right)\left(x-4\right)+\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{x-3}+1}=0\)
<=> \(\left(x-4\right)\left(\left(x-1\right)+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}\right)=0\)
<=> x - 4 = 0 vì \(\left(x-1\right)+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}>0;\forall x\ge3\)
<=> x = 4 tm
Vậy:...
ĐKXĐ \(x\ge0\)
Ta thấy x=0 không là nghiệm của phương trình
x khác 0
Chia cả 2 vế cho \(\sqrt{x}\)ta có
\(\sqrt{2x+5+\frac{2}{x}}=3\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\)
Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=a\left(a\ge2\right)\)
=> \(a^2=x+\frac{1}{x}+2\)
Khi đó phương trình tương đương
\(\sqrt{2a^2+1}=3\left(a-1\right)\)
<=> \(\hept{\begin{cases}a\ge1\\2a^2+1=9\left(a-1\right)^2\end{cases}}\)=> a=2
=> \(\sqrt{x}+\frac{1}{\sqrt{x}}=2\)=> x=1
S={1}
đk: \(x\ge3\)
Ta có: \(x^2+\sqrt{2x+1}+\sqrt{x-3}=5x\)
\(\Leftrightarrow\left(x^2-16\right)+\left(\sqrt{2x+1}-3\right)+\left(\sqrt{x-3}-1\right)-\left(5x-20\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)+\frac{2x-8}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{x-3}+1}-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}-5\right)=0\)
Vì \(\hept{\begin{cases}x+4\ge7\\\frac{2}{\sqrt{2x+1}+3}>0\\\frac{1}{\sqrt{x-3}+1}>0\end{cases}}\left(\forall x\ge3\right)\) nên từ đó:
\(\Rightarrow x+4+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}-5>0\left(\forall x\ge3\right)\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
Vậy x = 4