K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

đk: \(x\ge3\)

Ta có: \(x^2+\sqrt{2x+1}+\sqrt{x-3}=5x\)

\(\Leftrightarrow\left(x^2-16\right)+\left(\sqrt{2x+1}-3\right)+\left(\sqrt{x-3}-1\right)-\left(5x-20\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)+\frac{2x-8}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{x-3}+1}-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}-5\right)=0\)

Vì \(\hept{\begin{cases}x+4\ge7\\\frac{2}{\sqrt{2x+1}+3}>0\\\frac{1}{\sqrt{x-3}+1}>0\end{cases}}\left(\forall x\ge3\right)\) nên từ đó:

\(\Rightarrow x+4+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}-5>0\left(\forall x\ge3\right)\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

Vậy x = 4

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

4 tháng 7 2019

1   ĐKXD \(x\ge1\)

.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)

=> \(2b^2+3a^2=2x^2+5x-1\)

=> \(2b^2+3a^2-7ab=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)

\(a=2b\)

=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)

=> \(4x^2+3x+5=0\)vô nghiệm

\(a=\frac{1}{3}b\)

=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)

=> \(x^2-8x+10=0\)

<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)

Vậy \(x=4+\sqrt{6}\)

4 tháng 7 2019

ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)

\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)

<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)

 \(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)

Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)

nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)

Vậy x=-2

Em kiểm tra lại đề bài câu trên nhé

9 tháng 8 2017

\(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)

ĐK:\(x\ge3\)

\(pt\Leftrightarrow\sqrt{x^2-5x+6}-\sqrt{2}+\sqrt{x+1}-\sqrt{5}=\sqrt{x-2}-\sqrt{2}+\sqrt{x^2-2x-3}-\sqrt{5}\)

\(\Leftrightarrow\frac{x^2-5x+6-2}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x+1-5}{\sqrt{x+1}+\sqrt{5}}=\frac{x-2-2}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-3-5}{\sqrt{x^2-2x-3}+\sqrt{5}}\)

\(\Leftrightarrow\frac{x^2-5x+4}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}=\frac{x-4}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-8}{\sqrt{x^2-2x-3}+\sqrt{5}}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-4\right)}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}-\frac{x-4}{\sqrt{x-2}+\sqrt{2}}-\frac{\left(x-4\right)\left(x+2\right)}{\left(x+2\right)\sqrt{x^2-2x-3}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{x-1}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{1}{\sqrt{x-2}+\sqrt{2}}-\frac{x+2}{\left(x+2\right)\sqrt{x^2-2x-3}+\sqrt{5}}\right)=0\)

Suy ra x-4=0 =>x=4

27 tháng 8 2018

đề bài có đúng không

27 tháng 8 2018

chắc chắn đúng

29 tháng 6 2020

ĐK: x > = 3

pt <=> \(x^2-5x+4+\left(\sqrt{2x+1}-3\right)+\left(\sqrt{x-3}-1\right)=0\)

<=> \(\left(x-1\right)\left(x-4\right)+\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{x-3}+1}=0\)

<=> \(\left(x-4\right)\left(\left(x-1\right)+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}\right)=0\)

<=> x - 4 = 0  vì \(\left(x-1\right)+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}>0;\forall x\ge3\)

<=> x = 4  tm 

Vậy:...

21 tháng 5 2019

ĐKXĐ \(x\ge0\)

Ta thấy x=0 không là nghiệm của phương trình

x khác 0

Chia cả 2 vế cho \(\sqrt{x}\)ta có

\(\sqrt{2x+5+\frac{2}{x}}=3\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\)

Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=a\left(a\ge2\right)\)

=> \(a^2=x+\frac{1}{x}+2\)

Khi đó phương trình tương đương

\(\sqrt{2a^2+1}=3\left(a-1\right)\)

<=> \(\hept{\begin{cases}a\ge1\\2a^2+1=9\left(a-1\right)^2\end{cases}}\)=> a=2

=> \(\sqrt{x}+\frac{1}{\sqrt{x}}=2\)=> x=1

S={1}