Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^4=x^3+x\sqrt{3}\)
\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)
1) -x2+4x-6+ \(\frac{21}{x^2-4x+10}\)= 0
Đặt -x2+4x+10 là a, ta có:
-a +4+\(\frac{21}{a}\)=0
=> \(\frac{21+4a-a^2}{a}\)=0
=> 21+4a-a2=0
=>-(a-2)2=-25
=> (a-2)2=25 => \(\orbr{\begin{cases}a=7\\a=-3\end{cases}}\)
Bạn thay a vào rồi tính tiếp nha
ĐKXĐ : \(x\ne2\)
\(PT\Leftrightarrow\left(x^2+\left(\frac{2x}{x-2}\right)^2+\frac{4x^2}{x-2}\right)-\frac{4x^2}{x-2}-5=0\)
\(\Leftrightarrow\left(x+\frac{2x}{x-2}\right)^2-\frac{4x^2}{x-2}-5=0\)
\(\Leftrightarrow\frac{x^4}{\left(x-2\right)^2}-\frac{4x^2}{x-2}-5=0\)
\(\Leftrightarrow\frac{x^4}{\left(x-2\right)^2}-\frac{5x^2}{x-2}+\frac{x^2}{x-2}-5=0\)
\(\Leftrightarrow\left(\frac{x^2}{x-2}-5\right)\left(\frac{x^2}{x-2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+10=0\left(\Delta=25-40< 0;l\right)\\x^2+x-2=0\end{cases}}\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)(TMĐKXĐ)
\(ĐK:4x-1\ge0\Leftrightarrow x\ge\frac{1}{4}\)
\(pt\Leftrightarrow\frac{x}{\sqrt{4x-1}}-2+\frac{\sqrt{4x-1}}{x}=0\)
\(\Leftrightarrow\frac{x^2-2\sqrt{4x-1}.x+4x-1}{x\sqrt{4x-1}}=0\Leftrightarrow\frac{\left(x-\sqrt{4x-1}\right)^2}{x\sqrt{4x-1}}=0\)
\(\Rightarrow x=\sqrt{4x-1}\Rightarrow x^2=4x-1\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(x-2\right)^2=3\Rightarrow\orbr{\begin{cases}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\)
Nguyễn Hưng Phát ĐKXĐ : \(x>\frac{1}{4}\) mới đúng nha nhok :v
bn kiểm tra lại đề câu a nhé
b) ĐKXĐ: \(\forall x\)
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)
\(\Leftrightarrow\)\(\left|x-1\right|+\left|x-3\right|=2\) (1)
Nếu \(x< 1\)thì: \(\left(1\right)\Leftrightarrow\left(1-x\right)+\left(3-x\right)=2\)
\(\Leftrightarrow\) \(4-2x=2\) \(\Leftrightarrow\) \(x=1\)(loại)
Nếu \(1\le x< 3\)thì: \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(3-x\right)=2\)
\(\Leftrightarrow\) \(x-1+3-x=2\)\(\Leftrightarrow\)\(0x=0\) luôn đúng
Nếu \(x\ge3\)thì \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(x-3\right)=2\)
\(\Leftrightarrow\) \(2x-4=2\) \(\Leftrightarrow\) \(x=3\) luôn đúng
Vậy...
\(\Leftrightarrow\left(x^2-4x+6\right)\cdot\left(x^2-4x+10\right)=21\)
\(\Leftrightarrow\left(x^2-4x+6\right)\cdot\left(x^2-4x+10\right)-21=0\)
\(\Leftrightarrow x^4-4x^3+10x^2-4x^3+16x^2-40x+6x^2-24x+60-21=0\)
\(\Leftrightarrow x^4-8x^3+32x^2-64x+39=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+25x^2-25x-39x+39=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\cdot\left(x-1\right)+25x\left(x-1\right)-39x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(x^3-7x^2+25x-39\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-4x^2+12x+13x-39\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-4x\cdot\left(x-3\right)+13\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-4x+13\right)=0\)
\(\hept{\begin{cases}x-1=0\\x-3=0\\x^2-4x+13=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=3\\x\notin R\end{cases}}\)
Vậy phương trình của tập nghiệm là S={1;3}