K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

ĐK: \(\hept{\begin{cases}x\ge1\\x^2-20x+24\le0\end{cases}}\)

\(x^2-20x+24+8\sqrt{3\left(x-1\right)}=0\)

\(\Leftrightarrow2\left(x^2-20x+24+8\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow2x^2-32x+32+8\left(2\sqrt{3x-3}-x+2\right)=0\)

\(\Leftrightarrow2x^2-32x+32+8\left[2\sqrt{3x-3}-\left(x-2\right)\right]=0\)

\(\Leftrightarrow2x^2-32x+32+8\frac{4\left(3x-3\right)-\left(x-2\right)^2}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2x^2-32x+32+8\frac{12x-12-x^2+4x-4}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2\left(x^2-16x+16\right)-8\frac{x^2-16x+16}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow\left(x^2-16x+16\right)\left(2-\frac{8}{2\sqrt{3x-3}+x-2}\right)=0\)

Xét \(2-\frac{8}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2\sqrt{3x-3}+x-6=0\)

\(\Leftrightarrow\left(2\sqrt{3x-3}\right)^2=\left(6-x\right)^2\)

\(\Leftrightarrow12x-12=x^2-12x+36\)

\(\Leftrightarrow0=x^2-24x+48\)

Tự làm tiếp nhé ~

24 tháng 6 2015

Điều kiện: x\(\ge\) -3

PT <=>  \(\left(\sqrt{x+8}+\sqrt{x+3}\right)\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)

<=> \(\left(x+8-x-3\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)

<=> \(\sqrt{\left(x+3\right)\left(x+8\right)}+1=\sqrt{x+8}+\sqrt{x+3}\)

<=>   \(\left(\sqrt{\left(x+3\right)\left(x+8\right)}-\sqrt{x+8}\right)+\left(1-\sqrt{x+3}\right)=0\)

<=> \(\left(1-\sqrt{x+8}\right).\left(1-\sqrt{x+3}\right)=0\)

<=>  \(\sqrt{x+8}=1\) hoặc \(\sqrt{x+3}=1\)

<=> x+ 8 = 1 hoặc x + 3 = 1

<=> x = -7 hoặc x = - 2

Đối chiếu Đk => x = - 2 là nghiệm của PT

28 tháng 10 2022

b:

ĐKXĐ: x>0

 \(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)

\(\Leftrightarrow x+1-2\sqrt{x}=0\)

=>x=1

24 tháng 10 2018

a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)

\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)

ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\)\(VT\le7\)

\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)

b) điều kiện \(x>0\)

ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)

\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)

\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)

vậy \(x=1\)

23 tháng 10 2018

Mysterious Person giup mk nha

28 tháng 10 2022

b:

ĐKXĐ: x>0

 \(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)

\(\Leftrightarrow x+1-2\sqrt{x}=0\)

=>x=1

12 tháng 10 2019

b. Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath

13 tháng 11 2018

Nghĩ đc bài nào làm bài đấy ^^

\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)

\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)

\(\Leftrightarrow x-2mx=m^2+3\)

\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)

*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)

Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)

Pt vô nghiệm

*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)

Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)

Kết hợp ĐKXĐ \(x^2+x-3\ge0\)

                    \(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)

Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2

=> KL

13 tháng 11 2018

2) ĐKXĐ : -1 < x < 8

 Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)

\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)

Khi đó \(a+\frac{a^2-9}{2}=m\)

 \(\Leftrightarrow2a+a^2-9=2m\)

\(\Leftrightarrow a^2+2a-9-2m=0\)(1)

Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)

Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)

Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)

           \(\Leftrightarrow a^2+2a-9\ge-10\)

            \(\Leftrightarrow a^2+2a+1\ge0\)

            \(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)

Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 8

       * với m < -5 thì pt vô nghiệm

P/S: chả bt cách này đúng ko nx =.='