\(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

28 tháng 6 2019

\(đk:0\le x\le1\)

Ta có: \(\sqrt{x+x^2}=\sqrt{x\left(x+1\right)}\le\frac{x+x+1}{2},\sqrt{x-x^2}=\sqrt{x\left(1-x\right)}\le\frac{x+1-x}{2}\)

\(\Rightarrow VT\le x+1\)

Dấu "=" xra khi \(\hept{\begin{cases}x=x+1\\x=1-x\end{cases}\Leftrightarrow ko\exists x}\)

Vậy pt vô nghiệm

7 tháng 7 2018

a)

\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)

Không có giá trị nào của x nghiệm đúng phương trình.

Do đó phương trình vô nghiệm.

7 tháng 7 2018

b) ĐKXĐ \(x\le3\)

\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.

Tậm nghiệm S = {1}

26 tháng 7 2018

kuchiyose edo tensen 

26 tháng 7 2018

Thiên Đạo Pain bạn viết gì vậy ?????

30 tháng 7 2018

kuchiyose edo tensei

nhờ vào năng lực rinegan , ta có thể  đoán dc

  \(\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=1+x+8-x-2\sqrt{\left(X+1\right)\left(8-x\right)}\)

vậy pt sẽ như sau

\(a,\left(\sqrt{1+x}+\sqrt{8-x}\right)^2-\sqrt{\left(1+x\right)\left(8-x\right)}=3\) " thêm bớt nếu m thông minh sẽ hiểu "

\(9+2\sqrt{\left(1+x\right)\left(8-x\right)}-\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

\(\sqrt{\left(1+x\right)\left(8-x\right)}=-6\)

\(\left(1+x\right)\left(8-x\right)=36\)

đến đây m có thể tự làm

c)  \(\sqrt{x+5}=5-x^2\)

      \(x+5=\left(5-x\right)^2\)

     \(x+5=x^4-10x^2+25\)  " rồi xong pt bậc 4 :)

 \(x^4-10x^2-x+20=0\)

\(x^4=10x^2+x-20\)

\(x^4+2mx^2+m^2=10x^2+x-20+2mx^2+m^2\)

\(\left(x^2+m\right)^2=2x^2\left(5+m\right)+x+\left(m^2-20\right)\)

\(\Delta=1-8\left(5+m\right)\left(m^2-20\right)\)

\(\Delta=1-8\left(5m^2-100+m^3-20m\right)\)

\(\Delta=1-40m^2+800-8m^3+160m\)

\(\Delta=-\left(2m+9\right)\left(4m^2+2m-89\right)\)

lấy m= -9/2 , cho nhanh thay vào ta đươc

\(\left(x^2-\frac{9}{2}\right)^2=2x^2\left(5-\frac{9}{2}\right)+x+\left(\frac{9}{2}^2-20\right)\)

\(\left(x^2-\frac{9}{2}\right)^2=x^2+x+\frac{1}{4}\)

\(\left(x^2-\frac{9}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)

\(\hept{\begin{cases}x^2-\frac{9}{2}=x+\frac{1}{2}\\x^2-\frac{9}{2}=-x-\frac{1}{2}\end{cases}}\)

đến đây cậu có thể làm tiếp :)

câu B hơi gắt cần time suy nghĩ :)

24 tháng 6 2018

Bình phương hai vế của PT

Ta có: \(x+x^2+2\sqrt{\left(x+x^2\right)\left(x-x^2\right)}+x-x^2=x^2+2x+1\)

\(\Leftrightarrow2\sqrt{x^2-x^4}=x^2+1\)

\(\Leftrightarrow x^2-x^4=\left(\frac{x^2+1}{2}\right)^2\)

\(\Leftrightarrow x^2-x^4=\frac{x^4+2x^2+1}{4}\)

\(2x^2=5x^4+1\)

Không biết giải vậy đúng ko nữa Haizzzz.......

23 tháng 6 2018

Bạn ơi, có gì đó sai!!!

9 tháng 3 2018

Điều kiện:

\(\hept{\begin{cases}x^3-x^2\ge0\\x^2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x\ge1\end{cases}}\).

Ta nhận thấy x = 0 là nghiệm của (1). Xét trường hợp \(x\ge1\). Khi đó:

\(\left(1\right)\Leftrightarrow2x^2-2\sqrt{x^3-x^2}-2\sqrt{x^2-x}=0\)

\(\Leftrightarrow\left(x^2-2x\sqrt{x-1}+x-1\right)+\left(x^2-x-2\sqrt{x^2-x+1}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x-1}\right)^2+\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{x-1}=0\\\sqrt{x^2-x}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=x-1\\x^2-x=1\end{cases}}}\)

\(\Rightarrow x-1=x+1\Rightarrow\)x vô nghiệm

  Vậy phương trình đã cho có nghiệm duy nhất là x = 0

P/s: Bọn không biết giải thì dựa cột mà nghe. Đừng có đi chọn sai câu trả lời nhé!

8 tháng 5 2020

ĐK \(\orbr{\begin{cases}x=0\\x\ge1\end{cases}}\)

Với x=0 thỏa mãn phương trình

Với x\(\ge\)1 ta có \(\sqrt{x^3-x^2}=\sqrt{x^2\left(x-1\right)}\le\frac{1}{2}\left(x^2+x-1\right)\)

\(\sqrt{x^2-x}=\sqrt{1\left(x^2-x\right)}\le\frac{1}{2}\left(x^2-x+1\right)\)

\(\Rightarrow\sqrt{x^3-x^2}+\sqrt{x^2-x}\le x^2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2=x-1\\x^2-x=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=x-1\\x^2=x+1\end{cases}\Rightarrow}x-1=x+1}\)(vô lý)

Vậy pt đã cho có nghiệm duy nhất x=0