Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^{x+x}\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:2^4\)
\(4^x\cdot4^x\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:16\)
\(4^x=2^{4\cdot x}:16\)
\(16=\frac{\left(2^4\right)^x}{4^x}\)
\(16=\frac{\left(2^4\right)^x}{4^x}\)
\(16=\frac{16^x}{4^x}\)
\(16=\left(\frac{16}{4}\right)^x\)
\(16=4^x\)
\(4^x=16\)
\(4^x=4^2\)
\(\Rightarrow x=2\)
Từ hàng thứ 2 qua thứ 3 là do cách triệt số khi chuyển vế
Mình bổ sung nha:
\(4^x\cdot4^x\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:16\)
\(\frac{4^x\cdot4^{\sqrt{x+2}}}{4^x\cdot4^{\sqrt{x+2}}}+2^{x^3}-2^{x^3}=\cdot2^{4\cdot x}:16:4^x\)
\(\sqrt{x-3}-\sqrt{2x+1}=\sqrt{x-4}-\sqrt{x}\)
\(\Leftrightarrow x-3+2x+1-2\sqrt{\left(x-3\right)\left(2x+1\right)}=x+x-4-2\sqrt{x\left(x-4\right)}\)
\(\Leftrightarrow x-3+1-2\sqrt{\left(x-3\right)\left(2x+1\right)}+4+2\sqrt{x\left(x-4\right)}=0\)
\(\Leftrightarrow x+2-2\sqrt{\left(x-3\right)\left(2x+1\right)}+2\sqrt{x\left(x-4\right)}=0\)
\(\Leftrightarrow2\left(\sqrt{x\left(x-4\right)}-\sqrt{\left(x-3\right)\left(2x+1\right)}\right)=-2-x\)
\(\Leftrightarrow\sqrt{x\left(x-4\right)}-\sqrt{\left(x-3\right)\left(2x+1\right)}=\frac{-2-x}{2}\)\
\(\Leftrightarrow\sqrt{x^2-4x}-\sqrt{2x^2-5x-3}=\frac{-2-x}{2}\)
\(\Leftrightarrow x^2-4x+2x^2-5x-3-2\sqrt{\left(x^2-4x\right)\left(2x^2-5x-3\right)}=\left(\frac{-2-x}{2}\right)^2\)
\(\Leftrightarrow12x^2-36x-12-8\sqrt{\left(x^2-4x\right)\left(2x^2-5x-3\right)}=x^2+4x+4\)
\(\Leftrightarrow11x^2-40x-16=8\sqrt{\left(x^2-4x\right)\left(2x^2-5x-3\right)}\)
\(pt\Leftrightarrow\sqrt{\left(x^4-9\right)+\left(x^3-3x\right)}+\sqrt{\left(x^4-9\right)+\left(2x^3-6x\right)}+\sqrt{x^2-3}=0\)
\(\Leftrightarrow\sqrt{\left(x^2-3\right)\left(x^2+x+3\right)}+\sqrt{\left(x^2-3\right)\left(x^2+2x+3\right)}+\sqrt{x^2-3}=0\)
\(\Leftrightarrow\sqrt{x^2-3}\left(\sqrt{x^2+x+3}+\sqrt{x^2+2x+3}+1\right)=0\)
\(\text{Nếu }x=\pm\sqrt{3}\Rightarrow\text{thỏa mãn còn lại thì thừa số số 2}>0\text{ nên không thỏa}\)
PT: \(\sqrt{x+3}x^4=2x^4-2008x+2008\)
DK xác định : \(x+3\ge0\Leftrightarrow x\ge-3\)(**)
PT đã cho tương đương:
\(x^4\left(\sqrt{x+3}-2\right)+2008x=2008\)(***)
Nếu :\(x>1\) thì \(x+3>4\Rightarrow x^4\left(\sqrt{x+3}-2\right)+2008x>2008\)
Nếu \(-3\le x\le1\)thì\(0\le x+3< 4\Rightarrow\sqrt{x+3}-2< 0\)và \(x^4\ge0\)
\(\Rightarrow x^4\left(\sqrt{x+3}-2\right)\le0\) Mặt khác : \(2008x< 2008\)
\(\Rightarrow x^4\left(\sqrt{x+3}-2\right)+2008x< 2008\)
* \(x=1\) thỏa mãn (***)
Vậy (***) có nghiệm duy nhất x= 1
KL: Nghiệm của pt đã cho là : x = 1