\(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-5}}}}\)=5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

đặt \(\sqrt{x-\sqrt{x-5}}=a\left(a\ge0\right)=>x-\sqrt{x-5}=a^2\)   (1)

viết lại phương trình trên \(\sqrt{x-\sqrt{x-a}}=5< =>x-\sqrt{x-a}=25\)(2)

(1) - (2) = \(\sqrt{x-a}-\sqrt{x-5}=a^2-25\)    (3)

xét \(\sqrt{x-a}+\sqrt{x-5}=0< =>\hept{\begin{cases}x-a=0\\x-5=0\end{cases}< =>}\)\(\hept{\begin{cases}x=\sqrt{x-\sqrt{x-5}}\\x=5\end{cases}}\)(vô nghiệm)

hay \(\sqrt{x-a}+\sqrt{x-5}\ne0\)

(3) <=> \(\frac{x-a-\left(x-5\right)}{\sqrt{x-a}+\sqrt{x-5}}=\left(a-5\right)\left(a+5\right)\)<=>\(\frac{5-a}{\sqrt{x-a}+\sqrt{x-5}}+\left(5-a\right)\left(5+a\right)=0\)

<=> (5-a)(\(\frac{1}{\sqrt{x-a}+\sqrt{x-5}}+a+5\)) = 0 <=> 5-a = 0 ( vì với a\(\ge0\)thì \(\frac{1}{\sqrt{x-a}+\sqrt{x-5}}+a+5>0\))

<=> a=5  <=> \(\sqrt{x-\sqrt{x-5}}=5< =>x-\sqrt{x-5}=25< =>x-25=\sqrt{x-5}\left(x\ge25\right)\)

<=> x2 -50x + 625 = x - 5 <=> x2- 51x +630 = 0 <=> (x-30)(x-21) = 0 <=> x= 30 hoặc x= 21 ( loại vì điều kiện \(x\ge25\))

thay vào phương trình ta thấy x= 30 thỏa mãn nên phương trình có nghiệm duy nhất x=30

16 tháng 8 2018

sao bình phương dài thế 

lúc đầu mình ko hiểu xong mãi mới hiểu

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

1 tháng 8 2020

bình phương 2 vế ?

a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)

\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)

\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)

\(< =>x^2-5x+6=x^2-30x+225\)

\(< =>25x-219=0\)

\(< =>x=\frac{219}{25}\)

\(a,\sqrt{x-1-2\sqrt{x-2}}=1\)

\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}=1\)

\(\Leftrightarrow\left(\sqrt{\left(\sqrt{x-2}-1\right)^2}\right)^2=1^2\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2=1\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}-1=1\\\sqrt{x-2}-1=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=2\\\sqrt{x-2}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x-2}\right)^2=2^2\\\left(\sqrt{x-2}\right)=0^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2=4\\x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6\\x=2\end{cases}}\)

19 tháng 12 2021

a) \(\sqrt{x-1-2\sqrt{x-2}}\)=1

\(\sqrt{x-2-2\sqrt{x-2}+1}\)=1

\(\sqrt{\left(\sqrt{x-2}-1\right)^2}\)=1

⇔(\(\sqrt{\left(\sqrt{x-2}-1\right)^2}\))2=12

⇔(\(\sqrt{x-2}\)-1)2=1

\(\left\{{}\begin{matrix}\sqrt{x-2}-1=1\\\sqrt{x-2}-1=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\sqrt{x-2}=2\\\sqrt{x-2}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2=4\\x-2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

      Vậy phương trình có 2 nghiệm là x=6; x=2

b) \(\sqrt{x+\sqrt{x+5}}\)+\(\sqrt{x-\sqrt{x+5}}\)=2\(\sqrt{2}\)    ( đk: x≥-5)

⇔ x+\(\sqrt{x^2-x-5}\)=4

\(\sqrt{x^2-x-5}\)=4-x  

⇔(\(\sqrt{x^2-x-5}\))2= ( 4-x)2

⇔x2-x-5= 16-8x+x2

⇔x2-x+8x-x2=16+5

⇔ 7x=21

⇔x=3 ( thỏa mãn điều kiện xác định) 

20 tháng 10 2020

a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)  (đk: \(x\ge0\))

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)

\(\Leftrightarrow x=9\)(tmđk)

vậy nghiệm của phtrinh là x = 9

20 tháng 10 2020

b) \(\sqrt{x^2-6x+9}=6\)     (đk: \(x^2-6x+9\ge0\))

bình phương 2 vế, ta được: \(x^2-6x+9=36\)

\(\Leftrightarrow x^2-6x-27=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=9\)hoặc \(x=-3\)

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)