K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

chi ơi nhân sai à

2 tháng 9 2017

đặt \(\sqrt{x^2-2x+12}=a\)

pt <=>a=a^2

<=>a(1-a)=0

<=>a=0 hoặc a=1 thay vào rồi giải tiếp

NV
13 tháng 6 2020

1. ĐKXĐ: \(-4\le x\le6\)

\(\Leftrightarrow-x^2+2x+24+\sqrt{-x^2+2x+24}-12=0\)

Đặt \(\sqrt{-x^2+2x+24}=t\ge0\)

\(t^2+t-12=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-4\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{-x^2+2x+24}=3\)

\(\Leftrightarrow-x^2+2x+15=0\) (casio)

2. ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow3x^2-18=8\sqrt{x^3-1}-24\)

\(\Leftrightarrow3\left(x^2+2\right)=8\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow3\left(a^2-b^2\right)=8ab\)

\(\Leftrightarrow3a^2-8ab-3b^2=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3a+b\right)=0\)

\(\Leftrightarrow a=3b\) (do \(3a+b>0\))

\(\Leftrightarrow\sqrt{x^2+x+1}=3\sqrt{x-1}\)

\(\Leftrightarrow x^2+x+1=9\left(x-1\right)\) (casio)

27 tháng 8 2017

gọi số bị chia là a, số chia là b, gọi thương của 2 số là \frac{a}{b}

Theo đề bài, ta có:

a : b  

(a+73) : (b+4) =  dư 5

do đó
a + 73  x (b+4) + 5

a + 73 =  x b + \frac{a}{b} x 4 + 5

a + 73 - 5 = a +  

a + 68 = a +  

a - a + 68 =  

68 =  

hay  

 

 

Vậy thương của phép chia là 17

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B