Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Điều kiện b tự làm nhé
Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x+1}=a\left(a\ge0\right)\\2\sqrt{x^2-x+1}=b\left(b\ge0\right)\end{cases}}\)
Ta có: \(a^2-b^2=9x-3\)từ đó pt ban đầu thành
\(a-b=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\1=a+b\end{cases}}\)
Tới đây thì đơn giản rồi b làm tiếp nhé
ĐKXĐ : \(4x^2+5x+1\ge0\Leftrightarrow\left(4x+1\right)\left(x+1\right)\ge0\Rightarrow\orbr{\begin{cases}x\le-1\\x\ge-\frac{1}{4}\end{cases}}\)
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
\(\Leftrightarrow\sqrt{4x^2+5x+1}-\frac{2\sqrt{7}}{3}-2\sqrt{x^2-x+1}+\frac{2\sqrt{7}}{3}-9x+3=0\)
\(\Leftrightarrow\frac{4x^2+5x+1-\frac{28}{9}}{\sqrt{4x^2+5x+1}+\frac{2\sqrt{7}}{3}}-2\left(\frac{x^2-x+1-\frac{7}{9}}{\sqrt{x^2-x+1}+\frac{\sqrt{7}}{3}}\right)+3\left(3x-1\right)=0\)
\(\Leftrightarrow\frac{4x^2+5x-\frac{19}{9}}{\sqrt{4x^2+5x+1}+\frac{2\sqrt{7}}{3}}-2.\frac{x^2-x+\frac{2}{9}}{\sqrt{x^2-x+1}+\frac{\sqrt{7}}{3}}+3\left(3x-1\right)=0\)
\(\Leftrightarrow\frac{\left(x-\frac{1}{3}\right)\left(4x+\frac{19}{3}\right)}{\sqrt{4x^2+5x+1}+\frac{2\sqrt{7}}{3}}-\frac{2\left(x-\frac{2}{3}\right)\left(x-\frac{1}{3}\right)}{\sqrt{x^2-x+1}+\frac{\sqrt{7}}{3}}+9\left(x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)\left(\frac{4x+\frac{19}{3}}{\frac{2\sqrt{7}}{3}}-\frac{2x-\frac{4}{3}}{\sqrt{x^2-x+1}+\frac{\sqrt{7}}{2}}+9\right)=0\)
\(\Rightarrow x=\frac{1}{3}\)(TMĐKXĐ)
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
Đặt \(\hept{\begin{cases}\sqrt{4x^2+x+1}=a\\\sqrt{x^2-x+1}=b\end{cases}}\) \(\left(a,b\ge00\right)\)
Khi đó có pt \(a-2b=a^2-4b^2\)
\(\Leftrightarrow-\left(a-2b\right)\left(a+2b-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}b=\frac{1}{2}-\frac{a}{2}\\b=\frac{a}{2}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-x+1}=\frac{1}{2}-\frac{\sqrt{4x^2+x+1}}{2}\\\sqrt{x^2-x+1}=\frac{\sqrt{4x^2+x+1}}{2}\end{cases}}\)\(\Rightarrow x=\frac{1}{3}\)
Bạn tham khảo:
Câu hỏi của Nguyễn Thị Bình Yên - Toán lớp 9 | Học trực tuyến
Bạn lưu ý:
\(a=\sqrt{4x^2+5x+1}\ge0\)
\(b=\sqrt{4x^2-4x+4}=\sqrt{\left(2x-1\right)^2+3}\ge\sqrt{3}>1\)
Do đó \(a+b>1\) hay \(a+b-1>0\)
ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge-\frac{1}{4}\end{matrix}\right.\)
\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}+9x-3=0\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{4x^2+5x+1}\ge0\\b=\sqrt{4x^2-4x+4}>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=9x-3\)
Phương trình trở thành:
\(a-b+a^2-b^2=0\)
\(\Leftrightarrow a-b+\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a;b>0\Rightarrow a+b+1>0\))
\(\Leftrightarrow a=b\Rightarrow\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\)
\(\Leftrightarrow4x^2+5x+1=4x^2-4x+4\)
\(\Leftrightarrow9x=3\Rightarrow x=\frac{1}{3}\)
YRibi Nkok Ngokkudo shinichiNguyễn Thị Diễm QuỳnhDƯƠNG PHAN KHÁNH DƯƠNGNguyenkhongbietem!Y ThuKhôi BùiHISINOMA KINIMADOnguyễn ngọc dinhLê Anh DuyPhùng Tuệ MinhTrần Trung NguyênRồng Đom ĐómNguyễn Thành TrươngNguyễn Quỳnh ChiNguyễn Huy TúAkai HarumaAce LegonaNguyễn Thanh HằngVõ Đông Anh TuấnMysterious Personsoyeon_Tiểubàng giảiPhương AnTrần Việt Linh
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
\(\Leftrightarrow\sqrt{4x^2+5x+1}-\dfrac{2\sqrt{7}}{3}-\left(2\sqrt{x^2-x+1}-\dfrac{2\sqrt{7}}{3}\right)=9x-3\)
\(\Leftrightarrow\dfrac{4x^2+5x+1-\dfrac{28}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{4\left(x^2-x+1\right)-\dfrac{28}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=9x-3\)
\(\Leftrightarrow\dfrac{\dfrac{36x^2+45x-19}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{36x^2-36x+8}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=3\left(3x-1\right)\)
\(\Leftrightarrow\dfrac{\dfrac{\left(3x-1\right)\left(12x+19\right)}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{4\left(3x-2\right)\left(3x-1\right)}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}-3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3\right)=0\)
Dễ thấy: \(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3< 0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)
Ace Legona cái dễ thấy của bạn mình nghĩ lại là mấu chốt của bài này