Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}\) \(\Leftrightarrow\) \(f\left(x\right)=f\left(-2\right)\Leftrightarrow x=-2\)
Vậy phương trình có nghiệm x=-2
Xét \(y=\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}\), y liên tục và có đạo hàm \(y'=\dfrac{1}{3\sqrt[3]{\left(x+1\right)^2}}+\dfrac{1}{3\sqrt[3]{\left(x+2\right)^2}}+\dfrac{1}{3\sqrt[3]{\left(x+3\right)^2}}>0\) trên \(R\backslash\left\{-1;-2;-3\right\}\)\(\Rightarrow y\) đồng biến trên ... Mà \(y\left(-2\right)=0\Rightarrow x=-2\) là nghiệm duy nhất của pt
(=)\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=-\sqrt[3]{x+3}\)
(=) \(x+1+x+2+3\sqrt[3]{\left(x+1\right)\left(x+2\right)}.\left(\sqrt[3]{x+1}+\sqrt[3]{x+2}\right)\)= \(-x-3\)
(=) \(3x+6=3\sqrt[3]{x^3+6x^2+11x+6}\) (vì \(\sqrt[3]{x+1}+\sqrt[3]{x+2}=-\sqrt[3]{x+3}\))
=) \(\left(x+2\right)^3=x^3+6x^2+11x+6\)
phần còn lại tự giải nhé
\(2\sqrt{1-x}-\sqrt{x+1}+3\sqrt{1-x^2}=3-x\)
\(2\sqrt{1-x}-\sqrt{1+x}+2\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{\left(1-x\right)\left(1+x\right)}=3-x\)
\(2\sqrt{1-x}\left(1-\sqrt{1+x}\right)-\sqrt{1+x}\left(1-\sqrt{1-x}\right)=3-x\)
a) \(đkxđ:x\ge-1\)
\(\sqrt{x+1}+x=\sqrt{x+1}+2\Leftrightarrow x=2\left(tm\right)\).
b) đkxđ: \(\)\(\left\{{}\begin{matrix}3-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Thay x = 3 vào phương trình ta có:
\(3-\sqrt{3-3}=\sqrt{3-3}+3\Leftrightarrow3=3\left(tm\right)\)
Vậy x = 3 là nghiệm của phương trình.
c) Đkxđ \(\left\{{}\begin{matrix}2-x\ge0\\x-4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge4\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
d) Đkxđ: \(-x-1\ge0\Leftrightarrow-x\ge1\) \(\Leftrightarrow x\le-1\).
Pt\(\Leftrightarrow x^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy x = -2 là nghiệm của phương trình.
a) ĐKXĐ: x ≤ 3.
+x = + 1 ⇔ x = 1. Tập nghiệm S = {1}.
b) ĐKXĐ: x = 2.
Giá trị x = 2 nghiệm đúng phương trình. Tập nghiệm S = {2}.
c) ĐKXĐ: x > 1.
⇔ = 0
=> x = 3 (nhận vì thỏa mãn ĐKXĐ)
x = -3 (loại vì không thỏa mãn ĐKXĐ).
Tập nghiệm S = {3}.
d) xác định với x ≤ 1, xác định với x ≥ 2.
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.
Đặt \(x+2=a\)
\(\Rightarrow\sqrt[3]{a+1}+\sqrt[3]{a}+\sqrt[3]{a-1}=0\)
\(\Leftrightarrow\sqrt[3]{a+1}+\sqrt[3]{a-1}=-\sqrt[3]{a}\)
\(\Leftrightarrow2a+3\sqrt[3]{a^2-1}.\left(-\sqrt[3]{a}\right)=a\)
\(\Leftrightarrow3\sqrt[3]{a^3-a}=a\)
\(\Leftrightarrow27\left(a^3-a\right)=a^3\)
\(\Leftrightarrow a\left(26a^2-27\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=-\sqrt{\frac{27}{26}}\\a=\sqrt{\frac{27}{26}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-\sqrt{\frac{27}{26}}-2\\x=\sqrt{\frac{27}{26}}-2\end{matrix}\right.\)