K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)

Áp dụng bất đẳng thức cosi cho 3 số

\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)

\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)

\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)

\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)

vậy phương trình có nghiệm x=-1

22 tháng 9 2020

Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn

22 tháng 9 2020

Cách 1:

Với mọi x, ta có:

\(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)

Do đó: \(\sqrt[3]{x^2+3x+3}>0;\sqrt[3]{2x^2+3x+2}>0\)

Áp dụng bất đẳng thức Co-si cho 3 số:

\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right).1.1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)

\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right).1.1}\le\frac{2x^2+3x+4}{3}\)

\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)

\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)

Vậy nghiệm của phương trình là x=-1

Cách 2:

Đặt \(a=\sqrt[3]{x^2+3x+3}>0;b=\sqrt[3]{2x^2+3x+2}>0\)

Phương trình trở thành: \(a+b=2a^3+2b^3-2\)

Lại có: \(\left(a+b\right)\left(a-b\right)^2\ge0,\forall a>0,b>0\Rightarrow2a^3+2b^3\ge\frac{1}{2}\left(a+b\right)^3\)

\(\Rightarrow a+b\ge\frac{1}{2}\left(a+b\right)^3-2\Leftrightarrow\left(a+b-2\right)\left[\left(a+b\right)^2+2\left(a+b\right)+2\right]\le0\)

\(\Leftrightarrow a+b\le2\)

Từ phương trình ban đầu ta còn có: \(a+b=6\left(x+1\right)^2+2\ge2\Rightarrow a+b=2\Rightarrow x=-1\)

20 tháng 5 2018

Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia

25 tháng 7 2018

\(2x^2+2x+1=\sqrt{4x+1}\)

\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)

\(4x^4+8x^3+8x^2+4x+1=4x+1\)

\(\Leftrightarrow4x^4+8x^3+8x^2=0\)

\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x=0\)

ĐKXĐ: x2 - 3x + 3 \(\ge\) 0

Đặt t = \(\sqrt{x^2-3x+3}\) (t \(\ge\) 0)

=> t2 = x2 - 3x + 3 <=> x2 - 3x = t2 - 3

Khi đó ta có pt: 2(t2 - 3) + t + 3 = 0

<=> 2t2 - 6 + t + 3 = 0

<=> 2t2 + t - 3 = 0

<=> (t - 1)(2t + 3) = 0 <=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{3}{2}\left(ktm\right)\end{cases}}\)

Với t = 1 ta có: x2 - 3x = 12 - 3

<=> x2 - 3x+  2 = 0

<=> (x - 1)(x - 2) = 0 <=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)

Vậy S = \(\left\{1;2\right\}\)

15 tháng 3 2020

Đặt: \(\sqrt{x^2-3x+3}=t\ge0\)

=> \(2x^2-6x=2\left(x^2-3x\right)=2\left(t^2-3\right)\)

Ta có phương trình ẩn t : \(2\left(t^2-3\right)+t+3=0\)

<=> \(2t^2+t-3=0\)<=> t = 1 ( tm ) hoặc t = -3/2 ( loại)

Với t = 1 ta có: \(\sqrt{x^2-3x+3}=1\)

<=> \(x^2-3x+2=0\)

<=> x = 1 hoặc x = 2

15 tháng 10 2016

b/ Xác định điều kiện xác định ta có

\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)

=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm

15 tháng 10 2016

Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn

12 tháng 10 2017

e mới lớp 7 sr anh

22 tháng 5 2020

\(x^2-2x+4=3\sqrt{3x^2-6x+4}\)

\(< =>\left(x^2-2x+1\right)-3\sqrt{3x^2-6x+4}=0\)

Đến đây bạn chỉ cần xét th = 0 với khác 0 thôi 

19 tháng 7 2019

gợi ý nhé 

a (=)  2x.( 4x2+1) = (3x+2). căn(3x+1)          ( x>=-1/3)

 đặt 2x =a 

     căn (3x+1) = b    (b>=0)

  ta có hpt sau            a.(a2 +1)=b.(b2+1)    (1)

                                  3a-2b2= -2                (2)

   giải (1)   (=) a3 + a = b3 + b

                (=) (a-b).(a2+ab+b2+1) = 0 =) a=b  ( vì a2+ab+b2+1>0)

phần còn lại tự giải nhé

b (=)   (x+1).(x2+2x+2)=(x+2) . căn(x+1)         (x>=-1)   

(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0

=) x=-1

hay  căn(x+1) . (x2+2x+2) -x-2=0 

     cách 1 giải phổ thông ( chuyển vế rồi bình phương)

  cách 2 đặt ẩn phụ và lập hệ

 đặt căn(x+1)=a (a>=0) 

  =) a.[x(a2+1)+2] = a2+1   và a2 - x =1

tự giải nhé

c,tạm thời chưa nghĩ ra 

28 tháng 7 2015

Chia nhỏ ra đăng đi thớt :))

28 tháng 8 2016

bạn đăng

vậy đến bố tổ conf biết 

k thì 2 nha

21 tháng 7 2016

a) Đặt \(x^2+3x+1=y\)

=> y(y+1) - 6 = 0

=> \(y^2+y-6=0\)

=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)

Với y = 2 ta có:

\(x^2+3x+1=2\)

=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)

Với y = -3 ta có:

\(x^2+3x+1=-3\)

=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)

Có j không hiểu có thể hỏi lại mk

Chúc bạn làm bài tốt 

21 tháng 7 2016

b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)

\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)

\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)

\(\Leftrightarrow x^2=x^2+x-6\)

\(\Leftrightarrow x-6=0\)

\(\Leftrightarrow x=6\)

31 tháng 3 2016

Đặt a=…b=…; tìm các hệ thức liên hệ vế trái vế phải

Chú ý: đ. Kiện, h.đ.thức, vi et...

Rút, thế....v.v...

31 tháng 3 2016

minh ra rui mai giai cho coi dung ko