Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge\dfrac{5}{3}\)
Ta có: \(\sqrt{2x+5}=2+\sqrt{3x-5}\)
\(\Leftrightarrow2x+5=4+3x-5+4\sqrt{3x-5}\)
\(\Leftrightarrow6-x=4\sqrt{3x-5}\) ĐK: x≤6
\(\Leftrightarrow36-12x+x^2=48x-80\)
\(\Leftrightarrow x^2-60x+116=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-58\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=58\end{matrix}\right.\)
So với điều kiện thì phương trình có nghiệm duy nhất là x = 2
\(ĐK:x\ge\dfrac{5}{3}\\ PT\Leftrightarrow\left(\sqrt{2x+5}-3\right)-\left(\sqrt{3x-5}-1\right)=0\\ \Leftrightarrow\dfrac{2x-4}{\sqrt{2x+5}+3}-\dfrac{3x-6}{\sqrt{3x-5}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}-\dfrac{3}{\sqrt{3x-5}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{2}{\sqrt{2x+5}+3}=\dfrac{3}{\sqrt{3x-5}+1}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{3x-5}+2=3\sqrt{2x+5}+9\\ \Leftrightarrow2\sqrt{3x-5}=7+3\sqrt{2x+5}\\ \Leftrightarrow4\left(3x-5\right)=49+9\left(2x+5\right)+42\sqrt{2x+5}\\ \Leftrightarrow12x-20=49+18x+45+42\sqrt{2x+5}\\ \Leftrightarrow-6x-144=42\sqrt{2x+5}\)
Vì \(x\ge\dfrac{5}{3}>0\Leftrightarrow-6x-144< 0< 42\sqrt{2x+5}\)
Do đó (1) vô nghiệm
Vậy PT có nghiệm \(x=2\)
ĐK : \(x\ge-1\)
pt<=> \(\left(x+1\right)\left(x^2+1\right)=1\)(bình phương 2 vế ko âm)
<= .\(x^3+x^2+x+1=1\)
<=> \(x\left(x^2+x+1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x^2+x+1=0\end{cases}}\)(vô lí )
vậy x=0
Điều kiện x \(\ge\frac{1}{4}\)
Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))
=> x = a2 + \(\frac{1}{4}\)
=> PT <=> 2a2 + \(\frac{1}{2}\)+ \(\sqrt{a^2+\frac{1}{4}+a}\)= 2
<=> \(\sqrt{a^2+\frac{1}{4}+a}\)= \(\frac{3}{2}-2a\)
<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2
<=> 4a4 - 7a2 - a + 2 = 0
<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0
<=> a = 0,5
<=> x = 0,5
mình giải cho bạn 3 cách nhá . thấy cái nào đc thì làm
cách 1 )
ĐK \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)
Phương trình \(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
\(\Leftrightarrow4\left(2x^2-1\right)-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)
đặt \(\sqrt{2x^2-1}=t\left(t\ge0\right)\)ta được \(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)
ta có \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=x^2-6x+9=\left(x-3\right)^2\)
nên phương trình \(\Leftrightarrow\orbr{\begin{cases}t=\frac{3x+1-x+3}{4}\\t=\frac{3x+1+x-3}{4}\end{cases}=>\orbr{\begin{cases}t=\frac{x+2}{2}\\t=\frac{2x-1}{2}\end{cases}}}\)
zơi \(t=\frac{x+2}{2}\)thì \(\sqrt{2x^2-1}=\frac{x+2}{2}\Leftrightarrow\hept{\begin{cases}x\ge-2\\4\left(2x^2-1\right)=\left(x+2\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\7x^2-4x-8=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x=\frac{2\pm\sqrt{60}}{7}\end{cases}\Leftrightarrow x=\frac{2\pm\sqrt{60}}{7}}\)
zới \(t=\frac{2x-1}{2}\)thì \(\sqrt{2x^2-1}=\frac{2x-1}{2}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\4\left(2x^2-1\right)=\left(2x-1\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\4x^2+4x-5=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x=\frac{-1\pm\sqrt{6}}{2}\end{cases}\Leftrightarrow x=\frac{-1\pm\sqrt{6}}{2}}\)
kết hợp điều kiện \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)ta đc nghiệm của phương trình là \(\left\{\frac{2\pm\sqrt{60}}{7};\frac{-1\pm\sqrt{6}}{2}\right\}\)
cách 2 )
điều kiện như thế nhé
Phương trình \(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
Bình phương hai zế phương trình ta có
\(\Leftrightarrow\left[2\left(3x+1\right)\sqrt{2x^{2-1}}\right]=\left(10x^2+3x-6\right)^2\Leftrightarrow\left(7x^2-4x-8\right)\left(4x^2+4x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x^2-4x-8=0\\4x^2+4x-5=0\end{cases}}\)
giải phương trình \(7x^2-4x-8=0=>\orbr{\begin{cases}x=\frac{2+\sqrt{60}}{7}\\x=\frac{2-\sqrt{60}}{7}\end{cases}}\)
giải phương trình \(4x^2+4x-5=0=>\orbr{\begin{cases}x=\frac{-1+\sqrt{6}}{2}\\x=\frac{-1-\sqrt{6}}{2}\end{cases}}\)
kết luận nhưu cách 1
ĐK: \(\frac{2}{3}\le x\le\frac{3}{2}\)
(Vế phải và vế trái đều không âm nên có thể bình phương 2 vế theo một phương trình tương đương)
pt <=> \(x^2\left(3x-2\right)+\left(3-2x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=x^3+x^2+x+1\)
<=> \(3x^3-2x^2+3-2x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}-x^3-x^2-x-1=0\)
<=> \(2x^3-3x^2+2-3x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)
<=> \(x^2\left(2x-3\right)+\left(2-3x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)
<=> \(-x^2\left(3-2x\right)-\left(3x-2\right)+2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)
<=> \(x^2\left(3-2x\right)+\left(3x-2\right)-2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)
<=> \(\left(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}\right)^2=0\)
<=> \(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}=0\)
<=> \(\sqrt{x^2\left(3-2x\right)}=\sqrt{3x-2}\)
<=> \(x^2\left(3-2x\right)=3x-2\)
<=> \(-2x^3+3x^2-3x+2=0\)
<=> \(\left(x-1\right)\left(-2x^2+x-2\right)=0\)
<=> x=1 (tm)
ĐKXĐ: \(\frac{2}{3}\le x\le\frac{3}{2};x\in R\)
Pt cho tương đương: \(x\sqrt{3x-2}+\sqrt{3-2x}=\sqrt{\left(x+1\right)\left(x^2+1\right)}\)
Đặt \(\sqrt{3x-2}=a;\sqrt{3-2x}=b\left(a,b\ge0\right)\). Khi đó, ta được phương trình:
\(ax+b=\sqrt{\left(a^2+b^2\right)\left(x^2+1\right)}\Leftrightarrow a^2x^2+2abx+b^2=a^2x^2+b^2x^2+a^2+b^2\)
\(\Leftrightarrow2abx-b^2x^2-a^2=0\Leftrightarrow a^2-2abx+b^2x^2=0\)
\(\Leftrightarrow\left(a-bx\right)^2=0\Leftrightarrow a=bx\) hay \(\sqrt{3x-2}=x\sqrt{3-2x}\Leftrightarrow3x-2=3x^2-2x^3\)
\(\Leftrightarrow2x^3-3x^2+3x-2=0\Leftrightarrow2\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)=9\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2-x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\2x^2-x+2=0\left(vn\right)\end{cases}}\)
Vậy PT cho có nghiệm duy nhất x=1.
Cái chỗ " 2(x-1)(x2+x+1) - 3x(x-1) = 9" bn sửa 9 thành 0 nhé, tại mik gõ vội :(