Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: cos(2x+pi/6)=cos(pi/3-3x)
=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi
=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi
=>x=pi/30+k2pi/5 hoặc x=pi-k2pi
2: sin(2x+pi/6)=sin(pi/3-3x)
=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi
=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi
=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi
1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)
Đặt \(t=\dfrac{3\pi}{10}-\dfrac{x}{2}\)\(\Rightarrow\pi-3t=\dfrac{\pi}{10}+\dfrac{3\pi}{2}\)
\(pt\Leftrightarrow2sint=sin\left(\pi-3t\right)\)
\(\Leftrightarrow2sint=3sint-4sin^3t\)
\(\Leftrightarrow sint\left(1-4sin^2t\right)=0\)
\(\Leftrightarrow sint\left(2cos2t\right)=0\)
dễ nhé :3
a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)
=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi
=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi
=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi
b: =>(sin3x-sin2x)(sin3x+sin2x)=0
=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0
=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)
=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi
=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}sin^22x-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1-cos4x}{2}\right)-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}cos4x+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}\left(1-2sin^22x\right)+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow...\)
Để giải phương trình này, chúng ta sẽ sử dụng các công thức chuyển đổi của hàm lượng giác để làm cho phương trình có dạng đơn giản hơn.Trước tiên, chúng ta sẽ sử dụng công thức chuyển đổi:sin(π/3 - 3x) = sin(π/3)cos(3x) - cos(π/3)sin(3x)= (√3/2)cos(3x) - (1/2)sin(3x)Sau đó, phương trình trở thành:cos(3x + π/6) - (√3/2)cos(3x) + (1/2)sin(3x) = √3Tiếp theo, chúng ta sẽ sử dụng công thức cộng hai cosin và sin:cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a + b) = sin(a)cos(b) + cos(a)sin(b)Áp dụng công thức này, phương trình trở thành:cos(3x)cos(π/6) - sin(3x)sin(π/6
\(cos\cdot\left(3x-\dfrac{\pi}{6}\right)=sin\cdot\left(x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{6}=\dfrac{\pi}{4}-x+k2\pi\\3x-\dfrac{\pi}{6}=\dfrac{-\pi}{4}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{5\pi}{12}+k2\pi\\2x=\dfrac{-\pi}{12}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{48}+\dfrac{k\pi}{2}\\x=\dfrac{-\pi}{24}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
a) f'(x) = - 3sinx + 4cosx + 5. Do đó
f'(x) = 0 <=> - 3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5
<=> sinx - cosx = 1. (1)
Đặt cos φ = , (φ ∈) => sin φ = , ta có:
(1) <=> sinx.cos φ - cosx.sin φ = 1 <=> sin(x - φ) = 1
<=> x - φ = + k2π <=> x = φ + + k2π, k ∈ Z.
b) f'(x) = - cos(π + x) - sin = cosx + sin.
f'(x) = 0 <=> cosx + sin = 0 <=> sin = - cosx <=> sin = sin
<=> = + k2π hoặc = π - x + + k2π
<=> x = π - k4π hoặc x = π + k, (k ∈ Z).
a) Cách 1: Ta có:
y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.
Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.
Cách 2:
y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1
Do đó, y' = 0.
b) Cách 1:
Áp dụng công thức tính đạo hàm của hàm số hợp
(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u
Ta được
y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,
vì cos = cos = .
Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.
Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên
cos2 = cos2 '
cos2 = cos2 .
Do đó
y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.
Do đó y' = 0.
\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{4}=x-\dfrac{\pi}{3}+k2\pi\\3x+\dfrac{\pi}{4}=\pi-\left(x-\dfrac{\pi}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{-7\pi}{12}+k2\pi\\4x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7\pi}{24}+k\pi\\x=\dfrac{13\pi}{48}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
\(sin\left(3x+\dfrac{\Pi}{4}\right)=sin\left(x-\dfrac{\Pi}{3}\right)\)
\(\Leftrightarrow3x+\dfrac{\Pi}{4}=x-\dfrac{\Pi}{3}+K2\Pi\)
\(\Leftrightarrow2x=-\dfrac{7\Pi}{12}+K2\Pi\)
\(\Leftrightarrow x=-\dfrac{7\Pi}{24}+K\Pi\) \(\left(K\in Z\right)\)