Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bạn adct \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Ta cóA= \(\left|x-7\right|+\left|x+5\right|=\left|7-x\right|+\left|x+5\right|\ge\left|7-x+x+5\right|\)
=> \(\left|7-x\right|+\left|x+5\right|\ge12\) vậy minA=12
b)Ta có \(\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-2\left|2x-1\right|.\frac{3}{2}+\frac{9}{4}-\frac{1}{4}=\left(\left|2x-1\right|-\frac{3}{2}\right)^2-\frac{1}{4}\)=>minA=-1/4
\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)
\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)
\(\Leftrightarrow x\ge2\)
Với \(x\ge2\)thì ta suy ra được
\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)
Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:
\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)
\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3
a) Rút gọn :
ĐKXĐ : \(x\ne4,x\ne3\)
Ta có : \(Q=\frac{12x-45}{x^2-7x+12}-\frac{x+5}{x-4}+\frac{2x-3}{3-x}\)
\(=\frac{3\left(4x-15\right)}{\left(x-4\right)\left(x-3\right)}-\frac{\left(x+5\right)\left(x-3\right)}{\left(x-4\right)\left(x-3\right)}-\frac{\left(2x-3\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}\)
\(=\frac{12x-45-x^2-2x+15-2x^2+11x-12}{\left(x-4\right)\left(x-3\right)}\)
\(=\frac{-3x^2+21x-42}{\left(x-4\right)\left(x-3\right)}\)
... Chắc tui rút gọn sai òi :))
Giải phương trình \(|x^2-2xy+y^2+3x-2y-1|\) +4 = 2x - \(|x^2-3x+2|\)
giúp mk vs , mk cần gấp lắm !!!
Lời giải
Khử trị tuyệt đối
\(\left|\left(y-x-1\right)^2+x-2\right|+4=2x-\left|\left(x-1\right)\left(x-2\right)\right|\)
VT >= 4 =>để có nghiệm VP >=4
=> x>=2
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)\ge0\\\left(y-x-1\right)^2+\left(x-2\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|\left(y-x-1\right)^2+x\right|=\left(y-x-1\right)^2+\left(x-2\right)\\\left|\left(x-1\right)\left(x-2\right)\right|=\left(x-1\right)\left(x-2\right)\end{matrix}\right.\)
Phương trình tương đương hệ
\(\left\{{}\begin{matrix}x\ge2\left(1\right)\\\left(x-y+1\right)^2+\left(x-2\right)+4=2x-\left(x-1\right)\left(x-2\right)\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(x-y+1\right)^2=\left(x-2\right)-\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-y+1\right)^2=\left(x-2\right)\left[1-\left(x-1\right)\right]=-\left(x-2\right)^2\)
\(\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)=0\\x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Kết luận
(x,y) =(2,3) là nghiệm duy nhất