K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

bài lớp 8 à sao nghe sai sai có chép sai đầu bài ko

18 tháng 11 2019

đề đúng đó bn

29 tháng 1 2020

Hình như đề bị sai hay sao ý. Tui nghĩ đề vậy nè:

Giải phương trình: \(\left(x+3\right)\sqrt{-x^2-x+48}=x-24\)

Đặt: \(u=\sqrt{-x^2-x+48}\)\(v=x+3\left(u\ge0\right)\) ta suy ra:

\(\left\{{}\begin{matrix}u^2+v^2=-2x+57\\2ucv=2x-48\end{matrix}\right.\Rightarrow\left(u+v\right)^2=9\Rightarrow u+v=\pm3\)

+ Nếu \(u+v=3\) ta có:

\(\sqrt{-x^2-x+48}=-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\2x^2+8x-48=0\end{matrix}\right.\)

\(\Leftrightarrow x=-2-2\sqrt{7}\)

+ Nếu \(u+v=-3\) ta có:

\(\sqrt{-x^2-x+48}=-x-6\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-6\\2x^2+8x-48=0\end{matrix}\right.\)

\(\Leftrightarrow x=-5-\sqrt{31}\)

Vậy phương trình có nghiệm: \(\left\{x=-2-2\sqrt{7};-5-\sqrt{31}\right\}\)

29 tháng 1 2020

Điều kiện: \(\ - {x^2} - 8x + 48 \ge 0 \Leftrightarrow \left( {x - 4} \right)\left( {x + 12} \right) \le 0 \Leftrightarrow - 12 \le x \le 4.\)

\(\ PT \Leftrightarrow \left( {x + 3} \right)\sqrt { - {x^2} - 8x + 48} = - \dfrac{1}{2}{\left( {x + 3} \right)^2} - \dfrac{1}{2}\left( { - {x^2} - 8x + 48} \right) + \dfrac{9}{2}.\)

\(\ \Leftrightarrow {\left( {x + 3 + \sqrt { - {x^2} - 8x + 48} } \right)^2} = {3^2} \Leftrightarrow \left[ \begin{array}{l} \sqrt { - {x^2} - 8x + 48} = - x\\ \sqrt { - {x^2} - 8x + 48} = - x - 6 \end{array} \right.\)

- Nếu \(\ \sqrt { - {x^2} - 8x + 48} = - x \Leftrightarrow \left\{ \begin{array}{l} - 12 \le x \le 0\\ {x^2} + 4x - 24 = 0 \end{array} \right. \Leftrightarrow x = - 2\sqrt 7 - 2.\)

- Nếu \(\ \sqrt { - {x^2} - 8x + 48} = - x - 6 \Leftrightarrow \left\{ \begin{array}{l} - 12 \le x \le - 6\\ {x^2} + 10x - 6 = 0 \end{array} \right. \Leftrightarrow x = - \sqrt {31} - 5.\)

Vậy \(\ T = \left\{ { - \sqrt {31} - 5; - 2\sqrt 7 - 2} \right\}.\)

28 tháng 10 2019

VÁO KÊTF BẠN ĐI

28 tháng 10 2019

😁 😀 😀 😀

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt