K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

\(\left(x^2+8x+8\right)^2=\left(4x+6\right)\left(2x^2+12x+10\right)\)

\(\left(x^2+8x+8\right)^2-\left[\left(4x+6\right)\left(2x^2+12x+10\right)\right]=0\)

\(\left(x^2+4x+2\right)^2=0\)

\(x^2+4x=-2\)

\(x\left(x+4\right)=-2\)

\(x=\pm\sqrt{2}-2\)

21 tháng 2 2019

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

<=>\(\left(x^2-4\right)\left(x^2-10\right)=72\) (1)

Đặt \(x^2-7=t\)

=> pt (1) <=> \(\left(t+3\right)\left(t-3\right)=72\)

<=> \(t^2-9=72\)

<=> \(t^2-81=0\)

<=> \(\left(t-9\right)\left(t+9\right)=0\)

Tự làm nốt

21 tháng 2 2019

\(8x^2-\left(4x+3\right)^3+\left(2x+3\right)^3=0\)

\(\Leftrightarrow8x^2+\left(2x+3-4x-3\right)\left[\left(4x+3\right)^2+\left(2x+3\right)\left(4x+3\right)+\left(2x+3\right)^2\right]=0\)

\(\Leftrightarrow8x^2-2x\left(16x^2+24x+9+8x^2+18x+9+4x^2+12x+9\right)=0\)

\(\Leftrightarrow2x\left(4x-28x^2-54x-27\right)=0\)

\(\Leftrightarrow2x\left(28x^2+50x+27\right)=0\)

Tự làm nốt

26 tháng 2 2022

hic, mk chx học

15 tháng 5 2018

a)\(3\left(x^4+x^2+1\right)=\left(x^2+x+1\right)^2\)

Cauchy-schwarz:

\(\left(1+1+1\right)\left(x^4+x^2+1\right)\ge\left(x^2+x+1\right)^2\)

"="<=>\(x=1\)

b)\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(x^2+x-1=t\)

\(\Rightarrow\left(t-1\right)\left(t+1\right)=24\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow t=\pm5\)

t=5\(\Leftrightarrow x^2+x-1=5\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

t=-5<=> pt vô nghiệm

16 tháng 5 2018

d)\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Mà x,y nguyên dương\(\Rightarrow x-y-1< x+y+3\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

17 tháng 5 2018

Mạn phép ko chép lại đề :

b) \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}-x^2-2-\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

\(8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\) ( x # 0)

\(8\left(x^2+2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

⇔ ( x + 4)2 = 16

⇔ x2 + 8x + 16 = 16

⇔ x( x + 8) = 0

⇔ x = 0 ( KTM) hoặc : x = - 8 ( TM)

KL.....

5 tháng 11 2017

giúp mình bài ni với : x^2-y^2+2x+1

29 tháng 2 2020

a) \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow6x^2-3x-6x+3=5x^2-5x+40x-40\)

\(\Leftrightarrow6x^2-9x+3=5x^2+35x-40\)

\(\Leftrightarrow6x^2-9x+3-5x^2-35x+40=0\)

\(\Leftrightarrow x^2-44x+43=0\)

\(\Leftrightarrow\left(x-43\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-43=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=43\\x=0\end{cases}}\)

b) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow9x^2-1=12x^2+3x+4x+1\)

\(\Leftrightarrow9x^2-1=12x^2+7x+1\)

\(\Leftrightarrow9x^2-1-12x^2-7x-1=0\)

\(\Leftrightarrow-3x^2-2-7x=0\)

\(\Leftrightarrow3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!      

22 tháng 4 2017

Giải bài 32 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8

5 tháng 4 2018

a) \(8x+3\left(x+1\right)>5x-\left(2x-6\right)\)

\(8x + 3x + 3 > 5x - 2x + 6\)

\(11x+3>3x+6\)

\(11x - 3x > 6 -3\)

\(8x > 3\)

\(8x.\dfrac{1}{8}>3.\dfrac{1}{8}\)

\(x>\dfrac{3}{8}\)

S = \(\left\{x\backslash x>\dfrac{3}{8}\right\}\)

b) \(2x(6x-1) > (3x -2)(4x+3)\)

\(12x^2 - 2x > 12x^2 +9x -8x -6\)

\(12x^2 - 2x > 12x^2 + x - 6\)

\(-2x-x>12x^2 -6-12x^2\)

\(- 3x > -6 \)

\(x > 2\)

S = {x / x > 2}